Advertisement

Aquatic Ecology

, Volume 51, Issue 2, pp 307–319 | Cite as

Rising variance and abrupt shifts of subfossil chironomids due to eutrophication in a deep sub-alpine lake

  • Simon Belle
  • Virgile Baudrot
  • Andrea Lami
  • Simona Musazzi
  • Vasilis Dakos
Article

Abstract

In response to anthropogenic eutrophication and global warming, deep-water oxygen depletion is expected to have large effects on freshwater lake biogeochemistry and resident communities. In particular, it has been observed that deep-water hypoxia may potentially lead to regime shifts of lake benthic communities. We explored such community shifts by reconstructing a high-resolution subfossil chironomid record from a sediment core collected in the sub-alpine lake Remoray in France. We identified an abrupt shift in chironomid composition triggered by the collapse of the dominant Sergentia coracina-type chironomids around 1980. We found that the collapse of Sergentia coracina type was coupled to a gradual increase in organic matter content in lake sediments caused by eutrophication. We concluded that the most probable cause for the collapse of Sergentia coracina type was a change in oxygen concentrations below the minimal threshold for larval growth. We also analyzed trends in variance and autocorrelation of chironomid dynamics to test whether they can be used as early warnings of the Sergentia collapse. We found that variance rose prior to the collapse, but it was marginally significant (Kendal rank correlation 0.71, p = 0.05), whereas autocorrelation increased but insignificantly and less strongly (Kendal rank correlation 0.23, p = 0.25). By combining reconstructions of ecosystem dynamics and environmental drivers, our approach demonstrates how lake sediments may provide insights into the long-term dynamics of oxygen in lakes and its impact on aquatic fauna.

Keywords

Global change Regime shift Early-warning signal Oxygen depletion Benthic food web Paleolimnology 

Notes

Acknowledgements

The authors gratefully acknowledge the two anonymous reviewers and Michael Monagan for their constructive comments on this manuscript. We thank Laurent Millet and Valérie Verneaux (Chrono-Environnement, Besançon) for constructive discussions and Vincent Bichet and Laurie Murgia (Chrono-Environnement, Besançon) for technical help during coring survey and dating methods. We thank Christian Hossann (INRA Nancy, Champenoux) for assistance in the stable isotope analysis of carbon. Financial support was provided by Conseil Régional de Franche-Comté. The PTEF facility is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01). VD is supported by an ETH fellowship through the Center for Adaptation to a Changing Environment.

Supplementary material

10452_2017_9618_MOESM1_ESM.pdf (374 kb)
Electronic Supplementary Material 1 A: Trend in standard deviation of the relative abundances of Sergentia coracina-type using rolling windows of n = 16, 20 and 24 years. Vertical dashed line indicates the significant abrupt change in the composition of the chironomid assemblages. B: Distribution of the Kendall τ estimates of the 100 surrogate time series after fitting an ARMA model to the data (see Methods). The red square indicates the Kendall τ estimate of the original data and p is the actual p-value (PDF 374 kb)
10452_2017_9618_MOESM2_ESM.pdf (378 kb)
Electronic Supplementary Material 2 A: Trend in autocorrelation (as the coefficient of a first order Auto-Regressive model; AR1) of the relative abundances of Sergentia coracina-type using rolling windows of n = 16, 20 and 24 years (Dakos et al., 2012). Vertical dashed line indicates the significant abrupt change in the composition of the chironomid assemblages. B: Distribution of the Kendall τ estimates of the 100 surrogate time series after fitting an ARMA model to the data (see Methods). The red square indicates the Kendall τ estimate of the original data and p is the actual p-value (PDF 378 kb)
10452_2017_9618_MOESM3_ESM.pdf (455 kb)
Electronic Supplementary Material 3 A: Trend in standard deviation of PCA1 scores using rolling windows of n = 16, 20 and 24 years. Vertical dashed line indicates the significant abrupt change in the composition of the chironomid assemblages. B: Distribution of the Kendall τ estimates of the 100 surrogate time series after fitting an ARMA model to the data (see Methods). The red square indicates the Kendall τ estimate of the original data and p is the actual p-value (PDF 455 kb)
10452_2017_9618_MOESM4_ESM.pdf (363 kb)
Electronic Supplementary Material 4 A: Trend in autocorrelation (as the coefficient of a first order Auto-Regressive model; AR1) of PCA1 scores using rolling windows of n = 16, 20 and 24 years (Dakos et al., 2012). Vertical dashed line indicates the significant abrupt change in the composition of the chironomid assemblages. B: Distribution of the Kendall τ estimates of the 100 surrogate time series after fitting an ARMA model to the data (see Methods). The red square indicates the Kendall τ estimate of the original data and p is the actual p-value (PDF 362 kb)

References

  1. Aeschbach-Hertig W, Hofer M, Kipfer R, Imboden DM, Wieler R (1999) Accumulation of mantle gases in a permanently stratified volcanic lake (Lac Pavin, France). Geochim Cosmochim Acta 63:3357–3372CrossRefGoogle Scholar
  2. Anderson NJ, Bennion H, Lotter AF (2014) Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob Change Biol 20:2741–2751CrossRefGoogle Scholar
  3. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Clim 27:17–46CrossRefGoogle Scholar
  5. Batt RD, Carpenter SR, Cole JJ, Pace ML, Johnson RA (2013) Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation. P Nat Acad Sci USA 110:17398–17403CrossRefGoogle Scholar
  6. Belle S, Parent C, Frossard V, Verneaux V, Millet L, Chronopoulou P-M, Sabatier P, Magny M (2014) Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J Paleolimnol 52:215–228CrossRefGoogle Scholar
  7. Belle S, Millet L, Verneaux V, Lami A, David E, Murgia L, Parent C, Musazzi S, Gauthier E, Bichet V, Magny M (2016a) 20th century human pressures drive reductions in deepwater oxygen leading to losses of benthic methane-based food webs. Quat Sci Rev 137:209–220CrossRefGoogle Scholar
  8. Belle S, Verneaux V, Millet L, Etienne D, Lami A, Musazzi S, Reyss J-L, Magny M (2016b) Climate and human land-use as a driver of Lake Narlay (Eastern France, Jura Mountains) evolution over the last 1200 years: implication for methane cycle. J Paleolimnol 55:83–96CrossRefGoogle Scholar
  9. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  10. Brodersen KP, Quinlan R (2006) Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012CrossRefGoogle Scholar
  11. Brodersen KP, Pedersen O, Lindegaard C, Hamburger K (2004) Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnol Oceanogr 49:1549–1559CrossRefGoogle Scholar
  12. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London, p 276Google Scholar
  13. Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9:311–318CrossRefPubMedGoogle Scholar
  14. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  15. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T, Coloso J, Hodgson JR, Kitchell JF, Seekell DA, Smith L, Weidel B (2011) Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:1079–1082CrossRefPubMedGoogle Scholar
  16. Carpenter SR, Brock WA, Cole JJ, Pace ML (2014) A new approach for rapid detection of nearby thresholds in ecosystem time series. Oikos 123:290–297CrossRefGoogle Scholar
  17. Carstensen J, Telford RJ, Birks HJB (2013) Diatom flickering prior to regime shift. Nature 498:E11–E12CrossRefPubMedGoogle Scholar
  18. Charlton MN (1980) Hypolimnion oxygen consumption in lakes: discussion of productivity and morphometry effects. Can J Fish Aquat Sci 37:1531–1539CrossRefGoogle Scholar
  19. Conversi A, Dakos V, Gårdmark A, Ling S, Folke C, Mumby PJ, Greene C, Edwards M, Blenckner T, Casini M, Pershing A, Möllmann C (2015) A holistic view of marine regime shifts. Philos Trans R Soc Lond B Biol Sci 370:1659Google Scholar
  20. Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49:119–127CrossRefGoogle Scholar
  21. Crutzen PJ (2006) The ‘anthropocene’. In: Ehlers PDE, Krafft DT (eds) Earth system science in the anthropocene. Springer, Berlin, pp 13–18CrossRefGoogle Scholar
  22. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kéfi S, Livina V, Seekell DA, van Nes EH, Scheffer M (2012) Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7:e41010CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dakos V, van Nes EH, Scheffer M (2013) Flickering as an early warning signal. Theor Ecol 6:309–317CrossRefGoogle Scholar
  24. Dakos V, Carpenter SR, van Nes EH, Scheffer M (2015) Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos T R Soc B 370:20130263CrossRefGoogle Scholar
  25. den Heyer C, Kalff J (1998) Organic matter mineralization rates in sediments: a within-and among-lake study. Limnol Oceanogr 43:695–705CrossRefGoogle Scholar
  26. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929CrossRefPubMedGoogle Scholar
  27. Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycle. doi: 10.1029/2006GB002854
  28. Drake JM, Griffen BD (2010) Early warning signals of extinction in deteriorating environments. Nature 467:456–459CrossRefPubMedGoogle Scholar
  29. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  30. Frossard V, Millet L, Verneaux V, Jenny J-P, Arnaud F, Magny M, Poulenard J, Perga M-E (2013) Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years. J Paleolimnol 50:257–273CrossRefGoogle Scholar
  31. Gonzalez-Valencia R, Sepulveda-Jauregui A, Martinez-Cruz K, Hoyos-Santillan J, Dendooven L, Thalasso F (2014) Methane emissions from Mexican freshwater bodies: correlations with water pollution. Hydrobiologia 721:9–22CrossRefGoogle Scholar
  32. Gratton C, Vander Zanden MJ (2009) Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology 90:2689–2699CrossRefPubMedGoogle Scholar
  33. Gsell AS, Scharfenberger U, Özkundakci D et al (2016) Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. PNAS 113:E8089–E8095. doi: 10.1073/pnas.1608242113 CrossRefPubMedGoogle Scholar
  34. Guilizzoni P, Marchetto A, Lami A, Gerli S, Musazzi S (2011) Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol 45:433–445CrossRefGoogle Scholar
  35. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progr Oceanogr 47:103–145CrossRefGoogle Scholar
  36. Heinis F, Davids C (1993) Factors governing the spatial and temporal distribution of Chironomid larvae in the Maarsseveen lakes with special emphasis on the role of oxygen conditions. Neth J Aquat Ecol 27:21–34CrossRefGoogle Scholar
  37. Held H, Kleinen T (2004) Detection of climate system bifurcations by degenerate fingerprinting. Geophys Res Lett 31:L23207CrossRefGoogle Scholar
  38. Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P (2006) Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51:815–819CrossRefGoogle Scholar
  39. Jenny JP, Normandeau A, Francus P, Taranu ZE, Gregory-Eaves I, Lapointe F, Jautzy J, Ojala AEK, Dorioz J-M, Schimmelmann A, Zolitschka B (2016) Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc Nat Acad Sci USA 113:12655–12660CrossRefPubMedCentralGoogle Scholar
  40. Kéfi S, Dakos V, Scheffer M, Van Nes EH, Rietkerk M (2013) Early warning signals also precede non-catastrophic transitions. Oikos 122:641–648CrossRefGoogle Scholar
  41. Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Developments in paleoenvironmental research. Springer, Berlin, pp 201–248CrossRefGoogle Scholar
  42. Little JL, Hall RI, Quinlan R, Smol JP (2000) Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can J Fish Aquat Sci 57:333–341CrossRefGoogle Scholar
  43. Luoto TP, Salonen V-P (2010) Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities. Boreal Env Res 15:1–18Google Scholar
  44. Magnin A (1904) Monographies botaniques de 74 lacs jurassiens suivies de considérations générales sur la végétation lacustre. Paul Klincksieck, Paris, p 426Google Scholar
  45. Matzinger A, Müller B, Niederhauser P, Schmid M, Wüest A (2010) Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol Oceanogr 55:2073–2084CrossRefGoogle Scholar
  46. McLeod AI (2011) Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. http://CRAN.R-project.org/package=Kendall
  47. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  48. Millet L, Giguet-Covex C, Verneaux V, Druart J-C, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978CrossRefGoogle Scholar
  49. Müller B, Bryant LD, Matzinger A, Wüest A (2012) Hypolimnetic oxygen depletion in eutrophic lakes. Environ Sci Technol 46:9964–9971PubMedGoogle Scholar
  50. Pace ML, Carpenter SR, Johnson RA, Kurtzweil JT (2013) Zooplankton provide early warnings of a regime shift in a whole lake manipulation. Limnol Oceanogr 58:525–532CrossRefGoogle Scholar
  51. Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwr Biol 46:1529–1551CrossRefGoogle Scholar
  52. Quinlan R, Smol JP, Hall RI (1998) Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can J Fish Aquat Sci 55:587–596CrossRefGoogle Scholar
  53. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org
  54. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619CrossRefGoogle Scholar
  55. Rao YR, Howell T, Watson SB, Abernethy S (2014) On hypoxia and fish kills along the north shore of Lake Erie. J Great Lakes Res 40:187–191CrossRefGoogle Scholar
  56. Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chrironomidae) based on cephalic setation. J Paleolimnol 25:81–99CrossRefGoogle Scholar
  57. Rocha J, Yletyinen J, Biggs R, Blenckner T, Peterson G (2015) Marine regime shifts: drivers and impacts on ecosystems services. Philos Trans R Soc B 370:20130273CrossRefGoogle Scholar
  58. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefPubMedGoogle Scholar
  59. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefPubMedGoogle Scholar
  60. Simpson GL, Anderson NJ (2009) Deciphering the effect of climate change and separating the influence of confounding factors in sediment core records using additive models. Limnol Oceanogr 54:2529–2541CrossRefGoogle Scholar
  61. Smol JP (1992) Paleolimnology: an important tool for effective ecosystem management. J Aquat Ecosys Health 1:49–58CrossRefGoogle Scholar
  62. Veraart AJ, Faassen EJ, Dakos V, van Nes EH, Lürling M, Scheffer M (2011) Recovery rates reflect distance to a tipping point in a living system. Nature 481:357–359PubMedGoogle Scholar
  63. Verbruggen F, Heiri O, MeriläInen JJ, Lotter AF (2011) Subfossil chironomid assemblages in deep, stratified European lakes: relationships with temperature, trophic state and oxygen. Freshw Biol 56:407–423CrossRefGoogle Scholar
  64. Walker IR (2001) Midges: chironomidae and related diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Springer, Netherlands, pp 43–66CrossRefGoogle Scholar
  65. Wagner A, Volkmann S, Dettinger-Klemm PMA (2012) Benthic–pelagic coupling in lake ecosystems: the key role of chironomid pupae as prey of pelagic fish. Ecosphere 3:1–17CrossRefGoogle Scholar
  66. Wang R, Dearing JA, Langdon PG, Zhang E, Yang X, Dakos V, Scheffer M (2012) Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492:419–422CrossRefPubMedGoogle Scholar
  67. Wilhem S, Adrain R (2007) Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw Biol 53:226–237Google Scholar
  68. Wissel C (1984) A universal law of the characteristic return time near thresholds. Oecologia 65:101–107CrossRefPubMedGoogle Scholar
  69. Wouters N, Dakos V, Edwards M, Serafim MP, Valayer PJ, Cabral HN (2015) Evidencing a regime shift in the North Sea using early-warning signals as indicators of critical transitions. Estuar Coast Shelf Sci 152:65–72CrossRefGoogle Scholar
  70. Wülker W (1961) Studien zur morphologie, biologie und verbreitung der gattung Sergentia kieff. (dipt., chironomidae). Arch Hydrobiol 25:307–331Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Simon Belle
    • 1
    • 2
  • Virgile Baudrot
    • 1
  • Andrea Lami
    • 3
  • Simona Musazzi
    • 3
  • Vasilis Dakos
    • 4
    • 5
  1. 1.UMR CNRS 6249, Laboratoire de Chrono-EnvironnementUniversité de Bourgogne Franche-ComtéBesançonFrance
  2. 2.Center for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartumaaEstonia
  3. 3.CNRIstituto per lo Studio degli EcosistemiVerbaniaItaly
  4. 4.Institute of Integrative Biology, Center for Adaptation to a Changing EnvironmentETH ZürichZurichSwitzerland
  5. 5.Institut des Sciences de l’Evolution de Montpellier (ISEM), BioDICée team, CNRSUniversité de MontpellierMontpellierFrance

Personalised recommendations