Aquatic Ecology

, Volume 51, Issue 2, pp 257–273 | Cite as

Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment

  • Ülkü Nihan Tavşanoğlu
  • Michal Šorf
  • Konstantinos Stefanidis
  • Sandra Brucet
  • Semra Türkan
  • Helen Agasild
  • Didier L. Baho
  • Ulrike Scharfenberger
  • Josef Hejzlar
  • Eva Papastergiadou
  • Rita Adrian
  • David G. Angeler
  • Priit Zingel
  • Ayşe İdil Çakıroğlu
  • Arda Özen
  • Stina Drakare
  • Martin Søndergaard
  • Erik Jeppesen
  • Meryem Beklioğlu
Article

Abstract

Lentic ecosystems act as sentinels of climate change, and evidence exists that their sensitivity to warming varies along a latitudinal gradient. We assessed the effects of nutrient and water level variability on zooplankton community composition, taxonomic diversity and size structure in different climate zones by running a standardised controlled 6-months (May to November) experiment in six countries along a European north–south latitudinal temperature gradient. The mesocosms were established with two different depths and nutrient levels. We took monthly zooplankton samples during the study period and pooled a subsample from each sampling to obtain one composite sample per mesocosm. We found a significant effect of temperature on the community composition and size structure of the zooplankton, whereas no effects of water depth or nutrient availability could be traced. The normalised size spectrum became flatter with increasing temperature reflecting higher zooplankton size diversity due to higher abundance of calanoid copepods, but did not differ among depths or nutrient levels. Large-bodied cladocerans such as Daphnia decreased with temperature. Taxonomic diversity was positively related to size diversity, but neither of the two diversity measures demonstrated a clear pattern along the temperature gradient nor with nutrient and water levels. However, genus richness decreased at the warm side of the temperature gradient. Our experiment generally supports recent empirically based findings that a continuing temperature increase may result in lower genus richness and lower abundance of large-sized zooplankton grazers, the latter likely resulting in reduced control of phytoplankton.

Keywords

Climate change Water level change Zooplankton Size structure Mesocosms 

Supplementary material

10452_2017_9615_MOESM1_ESM.pdf (503 kb)
Supplementary material 1 (PDF 502 kb)
10452_2017_9615_MOESM2_ESM.docx (29 kb)
Supplementary material 2 (DOCX 29 kb)

References

  1. Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Chang Biol 12:652–661CrossRefGoogle Scholar
  2. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W et al (2009) Lakes as sentinels of climate change. Limnol Ocenogr 54(6):2283–2297CrossRefGoogle Scholar
  3. Badosa A, Boix D, Brucet S, López-Flores R, Gascón S, Quintana XD (2007) Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): influence of hydrology, nutrient composition, food resource availability and predation. Estuar Coast Shelf Sci 71:335–346CrossRefGoogle Scholar
  4. Baho DL, Tavsanoğlu ÜN, Šorf M, Stefanidis K, Drakere S, Scharfenberger U et al (2015) Macroecological pattern of resilience inferred from a multinational, synchronized experiment. Sustainability 7:1142–1160CrossRefGoogle Scholar
  5. Beisner B, McCauley E, Wronam F (1997) The influence of temperature and food chain length on plankton predator-prey dynamics. Can J Fish Aquat Sci 54:586–595Google Scholar
  6. Beklioğlu M, Romo S, Kagalou I, Quintana X, Becares E (2007) State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584:317–326CrossRefGoogle Scholar
  7. Bezirci G, Akkaş SB, Rinke K, Yildirim F, Kalaylioglu Z, Severcan F, Beklioglu M (2012) Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex. Ecotoxicology 21:601–614CrossRefPubMedGoogle Scholar
  8. Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG et al (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob Chang Biol 13:1314–1326CrossRefGoogle Scholar
  9. Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A et al (1976) A review of some problems in zooplankton production studies. Nor J Zool 24:419–456Google Scholar
  10. Boudreau PR, Dickie LM (1992) Biomass spectra of aquatic ecosystems in relation to fisheries yield. Can J Fish Aquat Sci 49(8):1528–1538CrossRefGoogle Scholar
  11. Brucet S, Boix D, López-Flores R, Badosa A, Moreno-Amich R, Quintana XD (2005) Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches. Arch Hydrobiol 162:535–555CrossRefGoogle Scholar
  12. Brucet S, Boix D, López-Flores R, Badosa A, Quintana XD (2006) Size and species diversity of zooplankton communities in fluctuating Mediterranean salt marshes. Estuar Coast Shelf Sci 67:424–432CrossRefGoogle Scholar
  13. Brucet S, Boix D, Quintana XD, Jensen E, Nathansen LW, Trochine C et al (2010) Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnol Oceanogr 55:1697–1711CrossRefGoogle Scholar
  14. Bucak T, Saraoğlu E, Levi EE, Tavşanoğlu ÜN, Çakıroğlu Aİ, Jeppesen E, Beklioğlu M (2012) The influence of water level on macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: a mesocosm experiment with and without fish. Freshwater Biol 57:1631–1642CrossRefGoogle Scholar
  15. Carvalho L, Kirika A (2003) Changes in shallow lake functioning: response to climate change and nutrient reduction. Hydrobiologia 506–509:789–796CrossRefGoogle Scholar
  16. Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems: work-shop conclusions. Hydrobiologia 506:23–27CrossRefGoogle Scholar
  17. de Senerpont Domis LN, Elser JJ, Gisell AS, Huszar VLM, Ibelings BW, Jeppesen E et al (2013) Plankton dynamics under different climatic conditions in space and time. Freshwater Biol 58:463–482CrossRefGoogle Scholar
  18. DeMott WR, Gulati RD, Van Donk E (2001) Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol Oceanogr 46:2054–2060CrossRefGoogle Scholar
  19. Dumont HJ, de Velde IV, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19(1):75–97CrossRefPubMedGoogle Scholar
  20. Emmrich M, Brucet S, Ritterbusch D, Mehner T (2011) Size spectra of lake fish assemblages: responses along gradients of general environmental factors and intensity of lake-use. Freshwater Biol 56:2316–2333CrossRefGoogle Scholar
  21. Fernando CH (2002) Zooplankton and tropical freshwater fisheries. In: Fernando CH (ed) A guide to tropical freshwater zooplankton. Identification, Ecology and Impact on Fisheries, Backhuys Publishers, Leiden, pp 255–280Google Scholar
  22. Gaedke U (1993) Ecosystem analysis based on biomass size distributions a case-study of a plankton community in a large lake. Limnol Oceanogr 38:112–127CrossRefGoogle Scholar
  23. García-Comas C, Chang CY, Ye L, Sastri AR, Lee YC, Gong GC, Hsieh CH (2013) Mesozooplankton size structure in response to environmental conditions in the East China Sea: How much does size spectra theory fit empirical data of a dynamic coastal area? Prog Oceanogr 121:141–157CrossRefGoogle Scholar
  24. Gillooly JF, Dodson SI (2000) Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol Oceanogr 45:22–30CrossRefGoogle Scholar
  25. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  26. Gliwicz ZM, Lampert W (1990) Food thresholds in Daphnia species in the absence and presence of blue–green filaments. Ecology 71:691–697CrossRefGoogle Scholar
  27. Gonzáles-Sagrario MA, Jeppesen E, Goma J, Søndergaard M, Jensen JP, Lauridsen TL, Landkildehus F (2005) Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biol 50:27–41CrossRefGoogle Scholar
  28. Gyllström M, Hansson L-A, Jeppesen E, Garcia-Criado F, Gross E, Irvine K et al (2005) The role of climate in shaping zooplankton communities of shallow lakes. Limnol Oceanogr 50:2008–2021CrossRefGoogle Scholar
  29. Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1(3):297–318CrossRefGoogle Scholar
  30. Havens KE, Elia AC, Taticchi MI, Fulton RS (2009) Zooplankton-phytoplankton relationships in shallow sub-tropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628:165–175CrossRefGoogle Scholar
  31. Havens KE, Pinto-Coelho RM, Beklioğlu M, Christoffersen KS, Jeppesen E, Lauridsen TL et al (2015) Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia 743:27–35CrossRefGoogle Scholar
  32. Heinrich G, Gobiet A (2012) The future of dry and wet spells in Europe: a comprehensive study based on the ensembles regional climate models. Int J Climatol 32:1951–1970CrossRefGoogle Scholar
  33. Hessen DO, Faafeng BA, Smith VH, Bakkestuen V, Walseng B (2006) Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87:433–443CrossRefPubMedGoogle Scholar
  34. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211CrossRefPubMedGoogle Scholar
  35. Hurlbert SH, Mulla MS (1981) Impacts of mosquitofish (Gambusia affinis) predation on plankton communities. Hydrobiologia 83:125–151CrossRefGoogle Scholar
  36. Iglesias C, Mazzeo N, Meerhoff M, Lacerot G, Clemente JM, Scasso F et al (2015) High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 743:27–35CrossRefGoogle Scholar
  37. Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction some recent findings and challenges ahead. Hydrobiologia 584:239–252CrossRefGoogle Scholar
  38. Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941CrossRefPubMedGoogle Scholar
  39. Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ et al (2010) Impacts of climate warming on lake fish community structure and potential ecosystem effects. Hydrobiologia 646:73–90CrossRefGoogle Scholar
  40. Jeppesen E, Nõges P, Davidson TA, Haberman J, Nõges T, Blank K et al (2011) Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676:279–297CrossRefGoogle Scholar
  41. Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL et al (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:84–107CrossRefGoogle Scholar
  42. Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Nõges T, Nõges P, Attayde JL, Zohary T, Coppens J, Bucak T, Menezes RF, Freitas FRS, Kernan M, Søndergaard M, Beklioğlu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227CrossRefGoogle Scholar
  43. Kerr SR, Dickie LM (2001) The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, New YorkGoogle Scholar
  44. Kosten S, Huszar VLM, Becares E, Costa LS, Van Donk E, Hansson L-A et al (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18:118–126CrossRefGoogle Scholar
  45. Landkildehus F, Søndergaard M, Beklioglu M, Adrian R, Angeler DG, Hejzlar J et al (2014) Climate change effects on shallow lakes: design and preliminary results of a cross-European climate gradient mesocosm experiment. Est J Ecol 63(2):71–89CrossRefGoogle Scholar
  46. Lewis WM Jr (1996) Tropical lakes: how latitude makes a different. In: Schiemer F, Boland KT (eds) Perspectives in tropical limnology. SPB Academic Publishing, Amsterdam, pp 43–64Google Scholar
  47. Malley DF, Lawrence SG, Maclver MA, Findlay WJ (1989) Range and variation in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American Lakes. Can Tech Rep Fish Aquat Sci 1666:1–49Google Scholar
  48. Margaritora FG, Ferrara O, Vagaggini D (2001) Predatory impact of the mosquitofish (Gambussia holbrooki Girard) on zooplanktonic populations in a pond at Tenuta di Castelporziano (Rome, Central Italy). J Limnol 60:189–193CrossRefGoogle Scholar
  49. McCauley E (1984) The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, Rigler FH (eds) A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell, London, pp 228–265Google Scholar
  50. McKee D, Atkinson D, Collings S, Eaton J, Harvey I, Heyes T et al (2002) Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshwater Biol 47:1557–1570CrossRefGoogle Scholar
  51. Meerhoff M, Iglesias C, Teixeira de Mello F, Clemente JM, Jensen E, Lauridsen TL, Jeppesen E (2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biol 52:1009–1021CrossRefGoogle Scholar
  52. Meerhoff M, Teixeira-de Mello F, Kruk C, Alonso C, González-Bergonzoni I, Pacheco JP et al (2012) Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Adv Ecol Res 46:259–349CrossRefGoogle Scholar
  53. Michaloudi E (2005) Dry weights of the zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belg J Zool 135(2):223–227Google Scholar
  54. Mooij WM, Hulsmann S, Domis LND, Nolet BA, Bodelier PLE, Boers PCM et al (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400CrossRefGoogle Scholar
  55. Moore M, Folt C (1993) Zooplankton body size and community structure: effects of thermal and toxicant stress. Trends Ecol Evol 8:178–183CrossRefPubMedGoogle Scholar
  56. Moss B, Stephen D, Balayla DM, Bécares E, Collings SE, Fernández-Aláez C et al (2004) Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biol 49:1633–1649CrossRefGoogle Scholar
  57. Nielsen DL, Brock MA, Rees GN, Baldwin DS (2003) Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51:655–665CrossRefGoogle Scholar
  58. O’Brian WJ (1979) The predator-prey interaction of planktivorous fish and zooplankton: recent research with planktivorous fish and their zooplankton prey shows the evolutionary thrust and parry of the predator-prey relationship. Am Sci 67(5):572–581Google Scholar
  59. Offill YA, Walton WE (1999) Comparative efficacy of the threespine stickleback (Gasterosteus aculeatus) and the mosquitofish (Gambusia affinis) for mosquito control. J Am Mosq Control Assoc 15(3):380–390PubMedGoogle Scholar
  60. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson G, Stevens MH et al. (2008) Vegan: community ecology package. R package version 1.13-1. http://vegan.r-forge.r-project.org
  61. Quintana XD, Brucet S, Boix D, Lopez-Flores R, Gascon S, Baldosa A et al (2008) A nonparametric method for the measurement of size diversity with emphasis on data standardization. Limnol Oceanogr Methods 6:75–86CrossRefGoogle Scholar
  62. Quintana XD, Arim M, Badosa A, Blanco JM, Boix D, Brucet B et al (2015) Predation and competition effects on the size diversity of aquatic communities. Aquat Sci 77(1):45–57CrossRefGoogle Scholar
  63. R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  64. Ruttner-Kolisko A (1977) Suggestions for biomass calculations of plankton rotifers. Arch Hydrobiol Beih Ergebn Limnol 8:71–76Google Scholar
  65. Shurin JB, Winder M, Adrian R, Keller WB, Matthews B, Paterson AM et al (2010) Environmental stability and lake zooplankton diversity–contrasting effects of chemical and thermal variability. Ecol Lett 13:453–463CrossRefPubMedGoogle Scholar
  66. Šorf M, Davidson TA, Brucet S, Menezes RF, Søndergaard M, Lauridsen TL et al (2015) Zooplankton response to climate warming: a mesocosm experiment at contrasting temperatures and nutrient levels. Hydrobiologia 742:185–203CrossRefGoogle Scholar
  67. Sprules WG (2008) Ecological change in Great Lakes communities—a matter of perspective. Can J Fish Aquat Sci 65(1):1–9CrossRefGoogle Scholar
  68. Stefanidis K, Papastergiadou E (2103) Effects of long term water level reduction on the ecology and water quality in an eastern Mediterranean lake. Knowl Manag Aquat Ecosyst 411:05Google Scholar
  69. Stewart RIA, Dossena M, Bohan DA, Jeppesen E, Kordas RL, Me Ledger et al (2013) Mesocosm experiments as a tool for ecological climate-change research. Adv Ecol Res 48:71–180CrossRefGoogle Scholar
  70. Strecker AL, Cobb TP, Vinebrooke RD (2004) Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnol Oceanogr 49:1182–1190CrossRefGoogle Scholar
  71. Vadadi-Fülöp C, Sipkay C, Mészáros G, Hufnagel L (2012) Climate change and freshwater zooplankton: What does it boil down to? Aquat Ecol 45:501–519CrossRefGoogle Scholar
  72. Vakkilainen K, Kairesalo T, Hietala J, Balayla DM, Bécares E, Van de Bund WJ et al (2004) Response of zooplankton to nutrient enrichment and fish in shallow lakes: a pan-European mesocosm experiment. Freshwater Biol 49:1619–1632CrossRefGoogle Scholar
  73. Wagner C, Adrian R (2011) Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwater Biol 56:1949–1961CrossRefGoogle Scholar
  74. Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Taylor&Francis Group, Boca Raton, FL Google Scholar
  75. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B 365:2093–2106CrossRefGoogle Scholar
  76. Woodward G, Brown LE, Edwards FK, Hudson LN, Milner AM, Reuman DC et al (2012) Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Phil Trans R Soc B 367:2990–2997CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yang T, Wang XY, Zhao CY, Chen X, Yu ZB, Shao QX et al (2011) Changes of climate extremes in a typical arid zone: observations and multimodel ensemble projections. J Geophys Res 116:D19106. doi:10.1029/2010JD015192 CrossRefGoogle Scholar
  78. Ye L, Chang CY, Garcia-Comas C, Gong GC, Hsieh CH (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82(5):1052–1061CrossRefPubMedGoogle Scholar
  79. Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the metabolic balance of ecosystems. Philos Trans R Soc B 365:2117–2126CrossRefGoogle Scholar
  80. Yvon-Durocher et al (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Chang Biol 17:1681–1694CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ülkü Nihan Tavşanoğlu
    • 1
  • Michal Šorf
    • 2
    • 3
  • Konstantinos Stefanidis
    • 4
  • Sandra Brucet
    • 5
    • 6
  • Semra Türkan
    • 7
  • Helen Agasild
    • 8
  • Didier L. Baho
    • 9
  • Ulrike Scharfenberger
    • 10
  • Josef Hejzlar
    • 3
  • Eva Papastergiadou
    • 4
  • Rita Adrian
    • 10
  • David G. Angeler
    • 9
  • Priit Zingel
    • 8
  • Ayşe İdil Çakıroğlu
    • 1
  • Arda Özen
    • 1
    • 11
  • Stina Drakare
    • 9
  • Martin Søndergaard
    • 5
  • Erik Jeppesen
    • 5
    • 12
    • 13
  • Meryem Beklioğlu
    • 1
    • 14
  1. 1.Limnology Laboratory, Department of Biological SciencesMiddle East Technical UniversityÇankayaTurkey
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Biology Centre of the Czech Academy of SciencesInstitute of HydrobiologyČeské BudějoviceCzech Republic
  4. 4.Department of BiologyUniversity of PatrasUniversity Campus, 26504 RioGreece
  5. 5.Department of Bioscience and Arctic Research CentreAarhus UniversityVejlsøvej 25, 8600 SilkeborgDenmark
  6. 6.Aquatic Ecology Group BETA Technology CentreICREA (Catalan Institution for Research and Advanced Studies) and University of VicVicSpain
  7. 7.Faculty of Science, Statistic DepartmentHacettepe UniversityAnkaraTurkey
  8. 8.Institute of Agricultural and Environmental Sciences Centre for LimnologyEstonian University of Life SciencesTartuEstonia
  9. 9.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesSE-750-07 UppsalaSweden
  10. 10.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  11. 11.Forest Engineering, Watershed Management DivisionÇankırı Karatekin UniversityÇankırıTurkey
  12. 12.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  13. 13.Sino-Danish Centre for Education and Research (SDC)Beijing 100190China
  14. 14.Kemal Kurdaş Ecological Research and Training CentreMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations