Skip to main content

Elevated carbon dioxide has the potential to impact alarm cue responses in some freshwater fishes

An Erratum to this article was published on 30 November 2016

Abstract

Freshwater fish behaviors have the potential to be impacted by acidification due to increases in dissolved carbon dioxide (CO2). Recent work in the marine environment suggests that increased CO2 levels due to climate change can negatively affect fishes homing to natal environments, while also hindering their ability to detect predators and perform aerobically. The potential for elevated CO2 to have similar negative impacts on freshwater communities remains understudied. The objective of our study was to quantify the effects of elevated CO2 on the behaviors of fathead minnows (Pimephales promelas) and silver carp (Hypophthalmichthys molitrix) following exposure to conspecific skin extracts (alarm cues). In fathead minnows, their response to conspecific skin extracts was significantly impaired following exposure to elevated CO2 levels for at least 96 h, while silver carp behaviors were unaltered. However, fathead minnow behaviors did return to pre-CO2 exposure in high-CO2-exposed fish following 14 days of holding at ambient CO2 levels. Overall, this study suggests there may be potential impacts to freshwater fishes alarm cue behaviors following CO2 exposure, but these responses may be species-specific and will likely be abated should the CO2 stressor be removed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allan BJ, Domenici P, McCormick MI, Watson S, Munday PL (2013) Elevated CO2 affects predator–prey interactions through altered performance. PLoS One 8:e58520. doi:10.1371/journal.pone.0058520

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Anscombe FJ, Tukey JW (1963) The examination and analysis of residuals. Technometrics 5:141–160. doi:10.1080/00401706.1963.10490071

    Article  Google Scholar 

  3. Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532. doi:10.1038/ngeo905

    CAS  Article  Google Scholar 

  4. Bates DM (2010) Lme4: mixed-effects modeling with R. Springer, Berlin

    Google Scholar 

  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  6. Brown GE, Adrian JC Jr, Smyth E, Leet H, Brennan S (2000) Ostariophysan alarm pheromones: laboratory and field tests of the functional significance of nitrogen oxides. J Chem Ecol 26:139–154. doi:10.1023/A:1005445629144

    CAS  Article  Google Scholar 

  7. Brown GE, Adrian JC Jr, Lewis MG, Tower JM (2002) The effects of reduced pH on chemical alarm signalling in ostariophysan fishes. Can J Fish Aquat Sci 59:1331–1338. doi:10.1139/f02-104

    CAS  Article  Google Scholar 

  8. Chivers DP, Smith RJF (1994) The role of experience and chemical alarm signalling in predator recognition by fathead minnows, Pimephales promelas. J Fish Biol 44:273–285. doi:10.1111/j.1095-8649.1994.tb01205.x

    Article  Google Scholar 

  9. Chivers DP, Smith RJF (1998) Chemical alarm signaling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352

    Article  Google Scholar 

  10. Chown SL, Gaston KJ (2015) Macrophysiology—progress and prospects. Funct Ecol 30:330–344. doi:10.1111/1365-2435.12510

    Article  Google Scholar 

  11. Ciais P, Sabine CL, Bala G, Bopp L, Brovkin V, Canadell J (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  12. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570. doi:10.1126/science.265.5178.1568

    CAS  Article  PubMed  Google Scholar 

  13. Colt J, Orwicz K (1991) Modeling production capacity of aquatic culture systems under freshwater conditions. Aquac Eng 10:1–29. doi:10.1016/0144-8609(91)90008-8

    Article  Google Scholar 

  14. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS One 6:e22736. doi:10.1371/journal.pone.0022736

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. De Robertis A, Ryer CH, Veloza A, Brodeur RD (2003) Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can J Fish Aquat Sci 60:1517–1526. doi:10.1139/f03-123

    Article  Google Scholar 

  16. Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91

    CAS  PubMed  Google Scholar 

  17. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi:10.1111/j.1461-0248.2009.01400.x

    Article  PubMed  Google Scholar 

  18. Dunson W, Swarts F, Silvestri M (1977) Exceptional tolerance to low pH of some tropical blackwater fish. J Exp Zool 201:157–162. doi:10.1002/jez.1402010202

    CAS  Article  Google Scholar 

  19. Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–971. doi:10.1016/j.anbehav.2005.01.016

    Article  Google Scholar 

  20. Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2011) Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol Lett 14:1143–1148. doi:10.1111/j.1461-0248.2011.01683.x

    Article  PubMed  Google Scholar 

  21. Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lönnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558. doi:10.1111/j.1365-2435.2011.01951.x

    Article  Google Scholar 

  22. Fisher HS, Wong BB, Rosenthal GG (2006) Alteration of the chemical environment disrupts communication in a freshwater fish. Proc R Soc Lond B Biol Sci 273:1187–1193. doi:10.1098/rspb.2005.3406

    CAS  Article  Google Scholar 

  23. Forsgren E, Dupont S, Jutfelt F, Amundsen T (2013) Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol Evol 3:3637–3646. doi:10.1002/ece3.709

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fuiman LA, Magurran AE (1994) Development of predator defences in fishes. Rev Fish Biol Fish 4:145–183. doi:10.1007/BF00044127

    Article  Google Scholar 

  25. Galloway BJ, Kieffer JD (2003) The effects of an acute temperature change on the metabolic recovery from exhaustive exercise in juvenile Atlantic salmon (Salmo salar). Physiol Biochem Zool 76:652–662. doi:10.1086/376921

    Article  PubMed  Google Scholar 

  26. Gattuso J, Lee K, Rost B, Schulz K (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 41–52

    Google Scholar 

  27. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Lond B Biol Sci 275:2165–2170. doi:10.1098/rspb.2008.0647

    Article  Google Scholar 

  28. Gonzalez RJ, Dunson WA (1987) Adaptations of sodium balance to low pH in a sunfish (Enneacanthus obesus) from naturally acidic waters. J Comp Physiol B 157:555–566. doi:10.1007/BF00700975

    Article  Google Scholar 

  29. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc R Soc Lond B Biol Sci 281:20132509. doi:10.1098/rspb.2013.2509

    Article  Google Scholar 

  30. Hara TJ (1993) Role of olfaction in fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London, pp 170–199

    Google Scholar 

  31. Hara TJ, Law YMC, MacDonald S (1976) Effects of mercury and copper on the olfactory response in rainbow trout, Salmo gairdneri. J Fish Res Board Can 33:1568–1573. doi:10.1139/f76-197

    CAS  Article  Google Scholar 

  32. Hasler CT, Butman D, Jeffrey JD, Suski CD (2016) Freshwater biota and rising pCO2? Ecol Lett 19:98–108. doi:10.1111/ele.12549

    Article  PubMed  Google Scholar 

  33. Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307:R1061–R1084. doi:10.1152/ajpregu.00064.2014

    CAS  Article  PubMed  Google Scholar 

  34. Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284:1199–1212. doi:10.1152/ajpregu.00267.2002

    Article  Google Scholar 

  35. Johnson MS, Billett MF, Dinsmore KJ, Wallin M, Dyson KE, Jassal RS (2010) Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3:68–78. doi:10.1002/eco.95

    CAS  Google Scholar 

  36. Jutfelt F, Hedgärde M (2013) Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure. Front Zool 10:81. doi:10.1186/1742-9994-10-81

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jutfelt F, Hedgärde M (2015) Juvenile Atlantic cod behavior appears robust to near-future CO2 levels. Front Zool 12:11. doi:10.1186/s12983-015-0104-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jutfelt F, de Souza KB, Vuylsteke A, Sturve J (2013) Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS One 8(6):e65825. doi:10.1371/journal.pone.0065825

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Kates D, Dennis C, Noatch MR, Suski CD, MacLatchy D (2012) Responses of native and invasive fishes to carbon dioxide: potential for a nonphysical barrier to fish dispersal. Can J Fish Aquat Sci 69:1748–1759. doi:10.1139/f2012-102

    CAS  Article  Google Scholar 

  40. Keene ON (1995) The log transformation is special. Stat Med 14:811–819. doi:10.1002/sim.4780140810

    CAS  Article  PubMed  Google Scholar 

  41. Klaprat DA, Brown SB, Hara TJ (1988) The effect of low pH and aluminum on the olfactory organ of rainbow trout, Salmo gairdneri. Environ Biol Fish 22:69–77. doi:10.1007/BF00000544

    Article  Google Scholar 

  42. Kolar CS, Chapman DC, Courtenay WR Jr, Housel CM, Williams JD, Jennings DP (2007) Bigheaded carps: a biological synopsis and environmental risk assessment, vol 33. American Fisheries Society Special Publication, Bethesda, Maryland

    Google Scholar 

  43. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974. doi:10.2307/2529876

    CAS  Article  PubMed  Google Scholar 

  44. Lawrence B, Smith R (1989) Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J Chem Ecol 15:209–219. doi:10.1007/BF02027783

    CAS  Article  PubMed  Google Scholar 

  45. Leduc AO, Kelly JM, Brown GE (2004) Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests. Oecologia 139:318–324. doi:10.1007/s00442-004-1492-8

    Article  PubMed  Google Scholar 

  46. Leduc AO, Roh E, Brown GE (2009) Effects of acid rainfall on juvenile Atlantic salmon (Salmo salar) antipredator behaviour: loss of chemical alarm function and potential survival consequences during predation. Mar Freshw Res 60:1223–1230

    CAS  Article  Google Scholar 

  47. Leduc AO, Munday PL, Brown GE, Ferrari MC (2013) Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Phil Trans R Soc Lond B Biol Sci 368:20120447. doi:10.1098/rstb.2012.0447

    Article  Google Scholar 

  48. Lemly AD, Smith RJF (1985) Effects of acute exposure to acidified water on the behavioral response of fathead minnows, Pimephales promelas, to chemical feeding stimuli. Aquat Toxicol 6:25–36. doi:10.1016/0166-445X(85)90017-7

    CAS  Article  Google Scholar 

  49. Lemly AD, Smith RJF (1987) Effects of chronic exposure to acidified water on chemoreception of feeding stimuli in fathead minnows (Pimephales promelas): mechanisms and ecological implications. Environ Toxicol Chem 6:225–238. doi:10.1002/etc.5620060307

    CAS  Article  Google Scholar 

  50. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation—a review and prospectus. Can J Zool 68:619–640. doi:10.1139/z90-092

    Article  Google Scholar 

  51. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687. doi:10.2307/2532087

    CAS  Article  PubMed  Google Scholar 

  52. Little EE, Calfee RD, Fabacher DL, Sanders L (2011) Fright reaction and avoidance induced by exposure to conspecific skin extracts in invasive bighead and silver carps. In: Chapman DC, Hoff MH (eds) Invasive Asian Carps in North America, vol 74. Bethesda, Md., American Fisheries Society, Symposium, Maryland, pp 215–226 (91862)

    Google Scholar 

  53. Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598. doi:10.1111/j.1365-2427.1996.tb01770.x

    CAS  Article  Google Scholar 

  54. Maneja R, Frommel A, Browman H, Clemmesen C, Geffen A, Folkvord A, Piatkowski U, Durif C, Bjelland R, Skiftesvik A (2013) The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2. Mar Biol 160:1963–1972. doi:10.1007/s00227-012-2054-y

    CAS  Article  Google Scholar 

  55. Mathis A, Smith RJF (1993) Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius). Behav Ecol 4:260–265. doi:10.1093/beheco/4.3.260

    Article  Google Scholar 

  56. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    CAS  Article  Google Scholar 

  57. Moore A (1994) An electrophysiological study on the effects of pH on olfaction in mature male Atlantic salmon (Salmo salar) parr. J Fish Biol 45:493–502. doi:10.1111/j.1095-8649.1994.tb01331.x

    Article  Google Scholar 

  58. Moran D (2014) The importance of accurate CO2 dosing and measurement in ocean acidification studies. J Exp Biol 217:1827–1828. doi:10.1242/jeb.105890

    CAS  Article  PubMed  Google Scholar 

  59. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi:10.1073/pnas.0809996106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MC, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934. doi:10.1073/pnas.1004519107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Munday PL, McCormick MI, Meekan M, Dixson DL, Watson S, Chivers DP, Ferrari MC (2012) Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif 1:1–5. doi:10.2478/oac-2012-0001

    Article  Google Scholar 

  62. Munday PL, Watson SA, Chung WS, Marshall NJ, Nilsson GE (2014) Response to ‘the importance of accurate CO2 dosing and measurement in ocean acidification studies’. J Exp Biol 217:1828–1829. doi:10.1242/jeb.105890

    CAS  Article  PubMed  Google Scholar 

  63. Munday PL, Welch MJ, Allan BJM, Watson SA, McMahon S, McCormick MI (2016) Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. bioRxiv. doi:10.1101/050062

    Google Scholar 

  64. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. doi:10.1038/nclimate1352

    CAS  Article  Google Scholar 

  65. Noatch MR, Suski CD (2012) Non-physical barriers to deter fish movements. Environ Rev 20:71–82. doi:10.1139/a2012-001

    Article  Google Scholar 

  66. Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun S, Brauner CJ (2015) Responses of pink salmon to CO2-induced aquatic acidification. Nat Clim Change 5:950–955. doi:10.1038/nclimate2694

    CAS  Article  Google Scholar 

  67. Pfeiffer W, Riegelbauer G, Meier G, Scheibler B (1985) Effect of hypoxanthine-3-N-oxide and hypoxanthine-1-N-oxide on central nervous excitation of the black tetra, Gymnocorymbus ternetzi (Characaidae, Ostariophysi, Pisces) indicated by dorsal light response. J Chem Ecol 11:507–523. doi:10.1007/BF00989562

    CAS  Article  PubMed  Google Scholar 

  68. Phillips JC, McKinley GA, Bennington V, Bootsma HA, Pilcher DJ, Sterner RW, Urban NR (2015) The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 28:136–145

    Article  Google Scholar 

  69. Poulsen SB, Svendsen JC, Aarestrup K, Malte H (2014) Calcium-dependent behavioural responses to acute copper exposure in Oncorhynchus mykiss. J Fish Biol 84:1326–1339. doi:10.1111/jfb.12356

    CAS  Article  PubMed  Google Scholar 

  70. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  71. Regan MD, Turko AJ, Heras J, Andersen MK, Lefevre S, Wang T, Bayley M, Brauner CJ, Huong DTT, Phuong NT, Nilsson GE (2016) Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J Exp Biol 219:109–118. doi:10.1242/jeb.131375

    Article  PubMed  Google Scholar 

  72. Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynmaics of carbon dioxide and methan in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56:265–274. doi:10.1139/f98-182

    Article  Google Scholar 

  73. Robbins L, Hansen M, Kleypas J, Meylan S (2010) CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geol Surv Open File Rep 1280:2010

    Google Scholar 

  74. Royce-Malmgren CH, Watson WH III (1987) Modification of olfactory-related behavior in juvenile Atlantic salmon by changes in pH. J Chem Ecol 13:533–546. doi:10.1007/BF01880097

    CAS  Article  PubMed  Google Scholar 

  75. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. doi:10.1098/rsbl.2011.0293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Smith R (1973) Testosterone eliminates alarm substance in male fathead minnows. Can J Zool 51:875–876. doi:10.1139/z73-130

    Article  Google Scholar 

  77. Sundin J, Jutfelt F (2015) 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J Mar Sci: J Cons fsv101:73. doi:10.1093/icesjms/fsv101

    Google Scholar 

  78. Suski CD, Killen SS, Kieffer JD, Tufts BL (2006) The influence of environmental temperature and oxygen concentration on the recovery of largemouth bass from exercise: implications for live—release angling tournaments. J Fish Biol 68:120–136. doi:10.1111/j.0022-1112.2006.00882.x

    CAS  Article  Google Scholar 

  79. Suski CD, Kieffer JD, Killen SS, Tufts BL (2007) Sub-lethal ammonia toxicity in largemouth bass. Comp Biochem Phys A 146:381–389. doi:10.1016/j.cbpa.2006.11.005

    CAS  Article  Google Scholar 

  80. Swann L, Fitzgerald S (1991) The use and application of salt in aquaculture. AS-cooperative extension service, Purdue University

  81. Venables W, Ripley B (2002) Modern applied statistics using S. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Illinois Department of Natural Resources through funds provided by the US Environmental Protection Agency’s Great Lakes Restoration Initiative, as well as the Illinois Chapter of the American Fisheries Society. The Upper Midwest Environmental Sciences Center (UMESC) provided laboratory space and silver carp for experiments. All work performed in this study conformed to guidelines established by the Institutional Animal Care and Use Committee (IACUC) of the University of Illinois (Protocol #14168).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cory D. Suski.

Additional information

Handling Editor: Piet Spaak.

The original version of this article was revised. The corresponding author’s name was misspelt. The correct name is updated in the article.

An erratum to this article is available at http://dx.doi.org/10.1007/s10452-016-9608-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tix, J.A., Hasler, C.T., Sullivan, C. et al. Elevated carbon dioxide has the potential to impact alarm cue responses in some freshwater fishes. Aquat Ecol 51, 59–72 (2017). https://doi.org/10.1007/s10452-016-9598-8

Download citation

Keywords

  • Acidification
  • Olfaction
  • Climate change
  • Behavior
  • Fathead minnows
  • Silver carp