Aquatic Ecology

, Volume 50, Issue 2, pp 261–271 | Cite as

Highly variable, unpredictable activity patterns in invasive, but not native amphipod species

  • David Bierbach
  • Kate L. Laskowski
  • Anna-Lena Brandt
  • Wei Chen
  • Jonas Jourdan
  • Bruno Streit
  • Martin Plath


Behavioral differences between native and introduced species may contribute to the invasiveness of certain species. This includes differences at the species level, consistent variation among individuals (“personality”) and within-individual variation (e.g., behavioral plasticity). Here, we investigated swimming activity of individuals from four different amphipod species occurring in the river Rhine system, three of which were native or naturalized (>100 years present) while one is a recent invader (Dikerogammarus villosus, <25 years present). At the species level, D. villosus did not show higher average swimming activity than the three non-invasive species. However, the non-invasive species, on average, changed their behavior predictably over the course of the experiment (“average behavioral plasticity”), while D. villosus did not exhibit any consistent change in activity. At the individual level, D. villosus exhibited greater among- and within-individual variation in activity levels than all non-invasive species. The non-invasive species further showed significant individual differences in plasticity, that is, individuals of these species differed consistently in how they changed their activity over time. The high within-individual variation in D. villosus translated into a lack of consistent individual differences in plasticity in this species. We hypothesize that the highly variable and unpredictable patterns of individual activity variation in D. villosus might help this successful invader to cope with new environmental conditions encountered in the river Rhine system.


Behavioral plasticity Dikerogammarus villosus Gammarus pulex Animal personality Invasion 



We like to thank H. Geupel and E.-M. Wörner for help with animal care as well as all participants of the 2013 student class “Experimental Ecology” for their help in the field and with data collection. We received financial support by the Biodiversity and Climate Research Centre (BiK-F), Frankfurt a.M., the research funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of the Hessian Ministry of Higher Education, Research, and the Arts as well as by the Leibniz Competition (SAW-2013-IGB-2) and by the DFG (LA 3778/1-1). The authors declare no conflict of interest.


  1. Anderson SC, Cooper AB, Dulvy NK (2013) Ecological prophets: quantifying metapopulation portfolio effects. Methods Ecol Evol 4:971–981Google Scholar
  2. Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  3. Bauer A, Trouvé S, Grégoire A, Lc Bollache, Cézilly F (2000) Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. Int J Parasitol 30:1453–1457CrossRefPubMedGoogle Scholar
  4. Bethel WM, Holmes JC (1973) Altered evasive behaviour and responses to light in amphipods harboring acanthocephalan cystacanths. J Parasitol 59:945–956CrossRefGoogle Scholar
  5. Bij de Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174. doi: 10.1139/f02-098 CrossRefGoogle Scholar
  6. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 CrossRefPubMedGoogle Scholar
  7. Błońska D, Grabowska J, Kobak J, Jermacz Ł, Bącela-Spychalska K (2015) Feeding preferences of an invasive Ponto-Caspian goby for native and non-native gammarid prey. Freshw Biol 60:2187–2195. doi: 10.1111/fwb.12647 CrossRefGoogle Scholar
  8. Bollache L, Kaldonski N, Troussard J-P, Lagrue C, Rigaud T (2006) Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Anim Behav 72:627–633. doi: 10.1016/j.anbehav.2005.11.020 CrossRefGoogle Scholar
  9. Brown C (2001) Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim Cogn 4:109–113. doi: 10.1007/s100710100105 CrossRefGoogle Scholar
  10. Canestrelli D, Bisconti R, Carere C (2015) Bolder takes all? The behavioral dimension of biogeography. Trends Ecol Evol 31:35–43. doi: 10.1016/j.tree.2015.11.004 CrossRefPubMedGoogle Scholar
  11. Carere C, Gherardi F (2013) Animal personalities matter for biological invasions. Trends Ecol Evol 28:5–6. doi: 10.1016/j.tree.2012.10.006 CrossRefPubMedGoogle Scholar
  12. Carvalho CF, Leitão AV, Funghi C, Batalha HR, Reis S, Mota PG, Lopes RJ, Cardoso GC (2013) Personality traits are related to ecology across a biological invasion. Behav Ecol 24:1081–1091. doi: 10.1093/beheco/art034 CrossRefGoogle Scholar
  13. Cassey P, Blackburn TM, Jones KE, Lockwood JL (2004) Mistakes in the analysis of exotic species establishment: source pool designation and correlates of introduction success among parrots (Aves: Psittaciformes) of the world. J Biogeogr 31:277–284. doi: 10.1046/j.0305-0270.2003.00979.x CrossRefGoogle Scholar
  14. Chapple DG, Simmonds SM, Wong BBM (2012) Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol 27:57–64. doi: 10.1016/j.tree.2011.09.010 CrossRefPubMedGoogle Scholar
  15. Chen W, Bierbach D, Plath M, Streit B, Klaus S (2012) Distribution of amphipod communities in the Middle to Upper Rhine and five of its tributaries. BioInvasion Rec 1:263–271CrossRefGoogle Scholar
  16. Cote J, Clobert J, Brodin T, Fogarty S, Sih A (2010a) Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos Trans R Soc B 365:4065–4076. doi: 10.1098/rstb.2010.0176 CrossRefGoogle Scholar
  17. Cote J, Fogarty S, Weinersmith K, Brodin T, Sih A (2010b) Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc R Soc B 277:1571–1579. doi: 10.1098/rspb.2009.2128 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Davis MA (2009) Invasion biology. Oxford University Press, OxfordGoogle Scholar
  19. Dick J, Platvoet D (1996) Intraguild predation and species exclusions in amphipods: the interaction of behaviour, physiology and environment. Freshw Biol 36:375–383. doi: 10.1046/j.1365-2427.1996.00106.x CrossRefGoogle Scholar
  20. Dick JTA, Platvoet D (2000) Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc R Soc B 267:977–983. doi: 10.1098/rspb.2000.1099 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dingemanse NJ, Wolf M (2013) Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim Behav 85:1031–1039. doi: 10.1016/j.anbehav.2012.12.032 CrossRefGoogle Scholar
  22. Dingemanse NJ, Kazem AJN, Réale D, Wright J (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81–89. doi: 10.1016/j.tree.2009.07.013 CrossRefPubMedGoogle Scholar
  23. Dingemanse NJ, Bouwman KM, van de Pol M, van Overveld T, Patrick SC, Matthysen E, Quinn JL (2012) Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J Anim Ecol 81:116–126. doi: 10.1111/j.1365-2656.2011.01877.x CrossRefPubMedGoogle Scholar
  24. Dubois F, Morand-Ferron J, Giraldeau L-A (2010) Learning in a game context: strategy choice by some keeps learning from evolving in others. Proc R Soc B 277:3609–3616. doi: 10.1098/rspb.2010.0857 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci USA 104:15017–15022. doi: 10.1073/pnas.0706174104 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eckmann R, Mörtl M, Baumgärtner D, Berron C, Fischer P, Schleuter D, Weber A (2008) Consumption of amphipods by littoral fish after the replacement of native Gammarus roeseli by invasive Dikerogammarus villosus in Lake Constance. Aquat Invasion 3:184–188. doi: 10.3391/ai.2008.3.2.9 CrossRefGoogle Scholar
  27. Eggers T, Martens A (2001) Bestimmungsschlüssel der Süßwasser-Amphipoda (Crustacea) Deutschlands. Lauterbornia 42:1–68Google Scholar
  28. Emde S, Kochmann J, Kuhn T, Plath M, Klimpel S (2014) Getting what is served? Feeding ecology influencing parasite–host interactions in invasive round goby Neogobius melanostomus. PLoS ONE 9:e109971. doi: 10.1371/journal.pone.0109971 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fogarty S, Cote J, Sih A (2011) Social personality polymorphism and the spread of invasive species: a model. Am Nat 177:273–287CrossRefPubMedGoogle Scholar
  30. Grabowski M, Bacela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84. doi: 10.1007/s10750-007-0759-6 CrossRefGoogle Scholar
  31. Greenberg R (1990) Feeding neophobia and ecological plasticity: a test of the hypothesis with captive sparrows. Anim Behav 39:375–379. doi: 10.1016/S0003-3472(05)80884-X CrossRefGoogle Scholar
  32. Gross K, Pasinelli G, Kunc HP (2010) Behavioral plasticity allows short-term adjustment to a novel environment. Am Nat 176:456–464CrossRefPubMedGoogle Scholar
  33. Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22CrossRefGoogle Scholar
  34. Hayes K, Barry S (2008) Are there any consistent predictors of invasion success? Biol Invasion 10:483–506. doi: 10.1007/s10530-007-9146-5 CrossRefGoogle Scholar
  35. Hunting ER, Whatley MH, Geest HGvd, Mulder C, Kraak MHS, Anton MB, Admiraal W (2012) Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles. Freshwat Sci 31:724–732. doi: 10.1899/11-134.1 CrossRefGoogle Scholar
  36. Jourdan J, Westerwald B, Kiechle A, Chen W, Streit B, Klaus S, Oetken M, Plath M (2016) Pronounced species turnover, but no functional equivalence in leaf consumption by invasive amphipods in the river Rhine. Biol Invasion 18:763–774. doi: 10.1007/s10530-015-1046-5 CrossRefGoogle Scholar
  37. Kinzler W, Kley A, Mayer G, Waloszek D, Maier G (2009) Mutual predation between and cannibalism within several freshwater gammarids: Dikerogammarus villosus versus one native and three invasives. Aquat Ecol 43:457–464. doi: 10.1007/s10452-008-9206-7 CrossRefGoogle Scholar
  38. Kley A, Kinzler W, Schank Y, Mayer G, Waloszek D, Maier G (2009) Influence of substrate preference and complexity on co-existence of two non-native gammarideans (Crustacea: Amphipoda). Aquat Ecol 43:1047–1059. doi: 10.1007/s10452-009-9242-y CrossRefGoogle Scholar
  39. Klüttgen B, Dülmer U, Engels M, Ratte H (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746CrossRefGoogle Scholar
  40. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi: 10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  41. Leuven REW, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders HJR, Bij de Vaate A (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biol Invasion 11:1989–2008. doi: 10.1007/s10530-009-9491-7 CrossRefGoogle Scholar
  42. Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion ecology. Wiley, New YorkGoogle Scholar
  43. Maazouzi C, Piscart C, Legier F, Hervant F (2011) Ecophysiological responses to temperature of the “killer shrimp” Dikerogammarus villosus: is the invader really stronger than the native Gammarus pulex? Comp Biochem Phys A 159:268–274. doi: 10.1016/j.cbpa.2011.03.019 CrossRefGoogle Scholar
  44. MacNeil C, Boets P, Platvoet D (2012) ‘Killer Shrimps’, dangerous experiments and misguided introductions: how freshwater shrimp (Crustacea: Amphipoda) invasions threaten biological water quality monitoring in the British Isles. Freshw Rev 5:21–35. doi: 10.1608/frj-5.1.457 CrossRefGoogle Scholar
  45. Magurran AE (1986) Individual differences in fish behaviour. In: Pitcher TJ (ed) The behaviour of teleost fishes. Croom Helm, London, pp 338–365CrossRefGoogle Scholar
  46. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956. doi: 10.1111/j.1469-185X.2010.00141.x PubMedGoogle Scholar
  47. Perrot-Minnot M-J, Maddaleno M, Balourdet A, Cézilly F (2012) Host manipulation revisited: no evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct Ecol 26:1007–1014. doi: 10.1111/j.1365-2435.2012.02027.x CrossRefGoogle Scholar
  48. Phillips BL, Suarez A (2012) The role of behavioural variation in the invasion of new areas. In: Candolin U, Wong BBM (eds) Behavioural responses to a changing world: mechanisms and consequences. Oxford University Press, OxfordGoogle Scholar
  49. Platvoet D, Dick JTA, MacNeil C, van Reil M, van der Velde G (2009) Invader-invader interactions in relation to environmental heterogeneity leads to zonation of two invasive amphipods, Dikerogammarus villosus (Sowinsky) and Gammarus tigrinus Sexton: amphipod pilot species project (AMPIS) report 6. Biol Invas 11:2085CrossRefGoogle Scholar
  50. R_Core_Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  51. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318. doi: 10.1111/j.1469-185X.2007.00010.x CrossRefPubMedGoogle Scholar
  52. Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–612CrossRefPubMedGoogle Scholar
  53. Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378. doi: 10.1016/j.tree.2004.04.009 CrossRefPubMedGoogle Scholar
  54. Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289. doi: 10.1111/j.1461-0248.2011.01731.x CrossRefPubMedGoogle Scholar
  55. Truhlar A, Aldridge D (2015) Differences in behavioural traits between two potentially invasive amphipods, Dikerogammarus villosus and Gammarus pulex. Biol Invasion 17:1569–1579. doi: 10.1007/s10530-014-0816-9 CrossRefGoogle Scholar
  56. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953. doi: 10.1073/pnas.100110397 CrossRefPubMedPubMedCentralGoogle Scholar
  57. van Riel MC, van der Velde G, Rajagopal S, Marguillier S, Dehairs F, Bij de Vaate A (2006) Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. In: Leuven RSEW, Ragas AMJ, Smits AJM, van der Velde G (eds) Living rivers: trends and challenges in science and management. Springer, Netherlands, pp 39–58. doi: 10.1007/1-4020-5367-3_3 CrossRefGoogle Scholar
  58. van Riel MC, van der Velde G, Bij de Vaate A (2011) Dispersal of invasive species by drifting. Curr Zool 57:818–827CrossRefGoogle Scholar
  59. Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi: 10.1126/science.277.5322.102 CrossRefGoogle Scholar
  60. Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461CrossRefPubMedGoogle Scholar
  61. Wolf M, van Doorn GS, Weissing FJ (2008) Evolutionary emergence of responsive and unresponsive personalities. Proc Natl Acad Sci USA 105:15825–15830. doi: 10.1073/pnas.0805473105 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wright TF, Eberhard JR, Hobson EA, Avery ML, Russello MA (2010) Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethol Ecol Evol 22:393–404. doi: 10.1080/03949370.2010.505580 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Department of Ecology and EvolutionJ.W. Goethe University FrankfurtFrankfurt am MainGermany
  3. 3.Senckenberg Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany
  4. 4.College of Animal Science and TechnologyNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations