Aquatic Ecology

, Volume 50, Issue 1, pp 75–85 | Cite as

Relative benefit of the invasive Echinogammarus berilloni (Catta, 1878) over native gammarids under fish predation (Gasterosteus aculeatus Linnaeus, 1758)

  • Alexander Schmidt-Drewello
  • H. Wolfgang Riss
  • Jörn P. Scharsack
  • Elisabeth I. MeyerEmail author


Running waters of Central Europe are progressively invaded by the southwest European amphipod Echinogammarus berilloni—as currently observed in the karstic upper River Lippe catchment (Paderborn Plateau, northwest Germany). We tested experimentally whether the succession of the invader is favored by lower predation intensity of three-spined sticklebacks (Gasterosteus aculeatus) compared to predation on the native gammarids Gammarus pulex and G. fossarum. Predation experiments were combined with two modifiers: species interaction (separate exposure of each species vs. joint exposure of each native species with the invader) and habitat structure (absence vs. availability of refuge structures as hideouts against predation). When the species were exposed separately to the predator and no refuges were offered, predation rates did not differ significantly. When refuges were present, predation success generally decreased, but was relatively lower on the invader E. berilloni than on the native species. When native and the invasive species were exposed jointly to predation, predation success decreased further in both species combinations. However, under both conditions, with and without refuge structures, survival of E. berilloni was significantly greater than in G. pulex. The findings corroborate our assumption that the invader E. berilloni profits from sympatric occurrence with native gammarid species, especially when hideout options are available. Whether this effect was caused by competition for refuges or simply by a relatively lower activity level of E. berilloni and smaller predator stimulus for the fish remains to be cleared. Without doubt, the difference in predation is a factor that contributes to the invader’s success.


Invasive amphipod Fish predation Echinogammarus berilloni Gammarus pulex Gammarus fossarum Gasterosteus aculeatus 



We thank Nicole Breul and Norbert Kaschek who helped collecting the gammarids in the field and Joe Lange for providing us with sticklebacks. Many thanks also to the anonymous reviewers who helped improving the manuscript.


  1. Åbjörnsson K, Dahl J, Nyström P, Brönmark C (2000) Influence of predator and dietary chemical cues on the behaviour and shredding efficiency of Gammarus pulex. Aquat Ecol 34:379–387CrossRefGoogle Scholar
  2. Andersson KG, Brönmark C, Herrmann J, Malmqvist B, Otto C, Sjörström P (1986) Presence of sculpins (Cottus gobio) reduces drift and activity of Gammarus pulex (Amphipoda). Hydrobiologia 133:209–215CrossRefGoogle Scholar
  3. Baumgärtner D, Jungbluth A, Koch U, von Elert E (2002) Effects of infochemicals on microhabitat choice by the freshwater amphipod Gammarus roeseli. Arch Hydrobiol 155:353–367Google Scholar
  4. Baumgärtner D, Koch U, Rothhaupt K-O (2003) Alteration of kairomone-induced antipredator response of the freshwater amphipod Gammarus roeseli by sediment type. J Chem Ecol 29:1391–1401CrossRefPubMedGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  6. Bij De Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S, Van Der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174CrossRefGoogle Scholar
  7. Boeker E (1926) Über das Vorkommen von Echinogammarus berilloni Catta in Westfalen. Zool Anz 26:5–8Google Scholar
  8. Bright C (1999) Invasive species: pathogens of globalization. Foreign Policy 116:50–64CrossRefGoogle Scholar
  9. Catta J-D (1878) Note sur le Gammarus berilloni (n. sp.). Bull Soc Borda 1:69–73Google Scholar
  10. Chevreux É (1896) Sur le Gammarus berilloni Catta. Bull Soc Zool Fr 21:29–33Google Scholar
  11. Costello MJ (1993) Biogeography of alien amphipods occurring in Ireland, and interactions with native species. Crustaceana 65:287–299CrossRefGoogle Scholar
  12. Dahl J, Nilsson PA, Pettersson LB (1998) Against the flow: chemical detection of downstream predators in running waters. Proc R Soc Lond Ser B Biol Sci 265:1339–1344CrossRefGoogle Scholar
  13. Devin S, Beisel J-N (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biol Invasions 9:13–24CrossRefGoogle Scholar
  14. Devin S, Piscart C, Beisel J, Moreteau J (2004) Life history traits of the invader Dikerogammarus villosus (Crustacea: Amphipoda) in the Moselle River, France. Int Rev Hydrobiol 89:21–34CrossRefGoogle Scholar
  15. Dick JTA (1992) The nature and implications of differential predation between Gammarus pulex and G. duebeni celticus (Crustacea: Amphipoda). J Zool 227:171–183CrossRefGoogle Scholar
  16. Dick JTA (1995) The cannibalistic behaviour of two Gammarus species (Crustacea: Amphipoda). J Zool 236:697–706CrossRefGoogle Scholar
  17. Dick JTA, Platvoet D (2000) Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc R Soc Lond Ser B Biol Sci 267:977–983CrossRefGoogle Scholar
  18. Dick JTA, Montgomery I, Elwood RW (1993) Replacement of the indigenous amphipod Gammarus duebeni celticus by the introduced G. pulex: differential cannibalism and mutual predation. J Anim Ecol 62:79–88CrossRefGoogle Scholar
  19. Dick JTA, Elwood RW, Montgomery WI (1995) The behavioural basis of a species replacement: differential aggression and predation between the introduced Gammarus pulex and the native G. duebeni celticus (Amphipoda). Behav Ecol Sociobiol 37:393–398CrossRefGoogle Scholar
  20. Dick JTA, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Can J Fish Aquat Sci 59:1078–1084CrossRefGoogle Scholar
  21. Dunn AM, Dick JTA, Hatcher MJ (2008) The less amorous Gammarus: predation risk affects mating decisions in Gammarus duebeni (Amphipoda). Anim Behav 76:1289–1295CrossRefGoogle Scholar
  22. Feige W (1991) Karstgebiete in Südostwestfalen und ihr Formenschatz. In: Geogr Kommission für Westfalen (ed). Spieker 11:25–42Google Scholar
  23. Flecker AS (1984) The effects of predation and detritus on the structure of a stream insect community: a field test. Oecologia 64:300–305CrossRefGoogle Scholar
  24. Galán C (2004) Fauna cavernícola del la Sierra de Aralar. Ecología, taxonomía y evolución. Sociedad de Ciencias Aranzadi. Accessed 27 Nov 2014
  25. Galil B, Nehring S, Panov V (2007) Waterways as invasion highways—impact of climate change and globalization. In: Nentwig W (ed) Biological invasions SE-5. Springer, Berlin, pp 59–74CrossRefGoogle Scholar
  26. Göcke C, Kaschek N, Meyer EI (2013) Diet of fishes in a detritus-based sandy lowland brook. Limnol Ecol Manag Inland Waters 43:451–459CrossRefGoogle Scholar
  27. Goedmakers A (1981a) Population dynamics of three gammarid species (Crustacea, Amphipoda) in a French chalk stream. Part 4. Review and implications. Bijdr tot Dierkd 51:181–190Google Scholar
  28. Goedmakers A (1981b) Population dynamics of three gammarid species (Crustacea, Amphipoda) in a French chalk stream. Part II. Standing crop. Bijdr Tot Dierkd 51:31–69Google Scholar
  29. Grabowski M, Bącela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590:75–84CrossRefGoogle Scholar
  30. Gras JM, Maasen AMJ (1971) Les gammaridés des eaux continentales et saumâtres du Sud-Est de la région armoricaine et du nord du bassin d’Aquitaine. Bijdr tot Dierkd 41:52–60Google Scholar
  31. Hänfling B, Edwards F, Gherardi F (2011) Invasive alien Crustacea: dispersal, establishment, impact and control. Biocontrol 56:573–595CrossRefGoogle Scholar
  32. Harrison SSC, Bradley DC, Harris IT (2005) Uncoupling strong predator-prey interactions in streams: the role of marginal macrophytes. Oikos 108:433–448CrossRefGoogle Scholar
  33. Hellmann C, Wissel B, Winkelmann C (2013) Omnivores as seasonally important predators in a stream food web 1. Freshw Sci 32(2):548–562CrossRefGoogle Scholar
  34. Holt R (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am Nat 124:377–406CrossRefGoogle Scholar
  35. Holthuis L (1956) Notities betreffende Limburgse Crustacea. 3. De Amphipoda (Vlokreeftjes) van Limburg. Natuurhistorisch Maandbl 45:83–95Google Scholar
  36. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18CrossRefGoogle Scholar
  37. Kaldonski N, Lagrue C, Motreuil S, Rigaud T, Bollache L (2008) Habitat segregation mediates predation by the benthic fish Cottus gobio on the exotic amphipod species Gammarus roeseli. Naturwissenschaften 95:839–844CrossRefPubMedGoogle Scholar
  38. Kelly DW, Dick JT, Montgomery WI (2002) The functional role of Gammarus (Crustacea, Amphipoda): shredders, predators, or both? Hydrobiologia 485(1–3):199–203CrossRefGoogle Scholar
  39. Kinzler W, Maier G (2006) Selective predation by fish: a further reason for the decline of native gammarids in the presence of invasives? J Limnol 65:27–34CrossRefGoogle Scholar
  40. Kley A, Maier G (2006) Reproductive characteristics of invasive gammarids in the Rhine-Main-Danube catchment, South Germany. Limnol Ecol Manag Inland Waters 36:79–90CrossRefGoogle Scholar
  41. Kotta J, Orav-Kotta H, Herkül K (2010) Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids. J Sea Res 64:369–372CrossRefGoogle Scholar
  42. Krisp H, Maier G (2005) Consumption of macroinvertebrates by invasive and native gammarids: a comparison. J Limnol 64:55–59CrossRefGoogle Scholar
  43. Kullmann H, Thünken T, Baldauf SA, Bakker TCM, Frommen JG (2008) Fish odour triggers conspecific attraction behaviour in an aquatic invertebrate. Biol Lett 4:458–460PubMedCentralCrossRefPubMedGoogle Scholar
  44. Maasjost L (1961) Morphologie und Karsterscheinungen in der Paderborner Hochebene. Jahreshefte Karst-und Höhlenkd 2:107–111Google Scholar
  45. Martin WM (2014) Naïve prey exhibit reduced antipredator behavior and survivorship. Peer J 2:e665. doi: 10.7717/peerj.665 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Mayer G, Maas A, Waloszek D (2012) Mouthpart morphology of three sympatric native and nonnative gammaridean species: Gammarus pulex, G. fossarum, and Echinogammarus berilloni (Crustacea: Amphipoda). Int J Zool 2012:1–23CrossRefGoogle Scholar
  47. Meyer A, Kaschek N, Meyer EI (2004) The effect of low flow and stream drying on the distribution and relative abundance of the alien amphipod, Echinogammarus berilloni (Catta, 1878) in a karstic stream system (Westphalia, Germany). Crustaceana 77:909–922CrossRefGoogle Scholar
  48. Newman RM, Waters TF (1984) Size-selective predation on Gammarus pseudolimnaeus by trout and sculpins. Ecology 65:1535–1545CrossRefGoogle Scholar
  49. Pennuto C, Keppler D (2008) Short-term predator avoidance behavior by invasive and native amphipods in the Great Lakes. Aquat Ecol 42:629–641CrossRefGoogle Scholar
  50. Pinkster S (1972) On members of the Gammarus pulex-group (Crustacea-Amphipoda) from Western Europe. Bijdr Dierk 42:164–191Google Scholar
  51. Pinkster S (1973) The Echinogammarus berilloni-group, a number of predominantly iberian amphipod species (Crustacea). Bijdr Dierk 43:1–39Google Scholar
  52. Pinkster S (1993) A revision of the genus Echinogammarus Stebbing, 1899, with some notes on related genera (Crustacea, Amphipoda). Mem del Mus Civ Stor nat (IIa ser) 1–185Google Scholar
  53. Piscart C, Manach A, Copp GH, Marmonier P (2007) Distribution and microhabitats of native and non-native gammarids (Amphipoda, Crustacea) in Brittany, with particular reference to the endangered endemic sub-species Gammarus duebeni celticus. J Biogeogr 34:524–533CrossRefGoogle Scholar
  54. Piscart C, Bergerot B, Laffaille P, Marmonier P (2009) Are amphipod invaders a threat to regional biodiversity? Biol Invasions 12:853–863CrossRefGoogle Scholar
  55. Piscart C, Roussel J, Dick JTA, Grosbois G, Marmonier P (2011) Effects of coexistence on habitat use and trophic ecology of interacting native and invasive amphipods. Freshw Biol 56:325–334CrossRefGoogle Scholar
  56. Pöckl M (2009) Success of the invasive Ponto–Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biol Invasions 11:2021–2041CrossRefGoogle Scholar
  57. Poisson R (1921) Cephalodidophora echinogammari n. sp. gregarine parasite du tube digestif d’Echinogammarus berilloni CATTA. CR Soc Biol 84:73–75Google Scholar
  58. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  59. Saat T, Turovski A (2003) Three-spined stickleback, Gasterosteus aculeatus L. In: Ojaveer E, Pihu E, Saat T (eds) Fishes of Estonia. Estonian Academy of Publishers, Tallinn, pp 274–280Google Scholar
  60. Schellenberg A (1925) Echinogammarus berilloni (Catta), ein Bewohner deutscher Gewässer. Zool Anz 62:493–511Google Scholar
  61. Shatilina ZM, Riss HW, Protopopova MV, Trippe M, Meyer EI, Pavlichenko VV, Bedulina DS, Axenov-Gribanov DV, Timofeyev MA (2011) The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats. J Therm Biol 36:142–149CrossRefGoogle Scholar
  62. Spandl H (1926) Amphipoden aus dem nördlichen und östlichen Spanien. Senckenbergiana 8:128–132Google Scholar
  63. Therriault TW, Orlova MI, Docker MF, MacIsaac HJ, Heath DD (2005) Invasion genetics of a freshwater mussel (Dreissena rostriformis bugensis) in eastern Europe: high gene flow and multiple introductions. Heredity (Edinb) 95:16–23CrossRefGoogle Scholar
  64. Uiblein F, Eberstaller J, Pöckl M, Winkler H (1992) Effects of differential prey mobility on the foraging behaviour of a cyprinid fish, Vimba elongata. Ethol Ecol Evol 4:293–297CrossRefGoogle Scholar
  65. Vandel A (1926) La répartition de deux amphipodes, Gammarus pulex (L.) et Echinogammarus berilloni (Catta) dans le sud-ouest de la France. Bull Soc Zool Fr 51:35–39Google Scholar
  66. Vincent M (1964) Total chlorine and water content of Gammarus pulex pulex (L.) and Echinogammarus berilloni (C.) living in fresh water and diluted sea water. C R Séances Soc Biol Fil 158:809PubMedGoogle Scholar
  67. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478Google Scholar
  68. Welton JS (1979) Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshw Biol 9:263–275CrossRefGoogle Scholar
  69. Wiezer SMH (2007) Influence of kairomones from Leuciscus idus on the behavior of Gammarus pulex measured with the multispecies freshwater biomonitor. Centre for Soil Ecology. Accessed 21 Mar 2015
  70. Wouters K (2002) On the distribution of alien non-marine and estuarine macro-crustaceans in Belgium. Bull K Belg Inst Natuurwetenschappen Biol 72:119–128Google Scholar
  71. Wudkevich K, Wisenden BD, Chivers DP, Smith RJF (1997) Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics. J Chem Ecol 23:1163–1173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alexander Schmidt-Drewello
    • 1
  • H. Wolfgang Riss
    • 1
  • Jörn P. Scharsack
    • 2
  • Elisabeth I. Meyer
    • 1
    Email author
  1. 1.Department of Limnology, Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
  2. 2.Department of Animal Evolutionary Ecology, Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany

Personalised recommendations