Aquatic Ecology

, Volume 50, Issue 1, pp 29–44 | Cite as

Production of exopolymers (EPS) by cyanobacteria: impact on the carbon-to-nutrient ratio of the particulate organic matter

  • Alexandrine PannardEmail author
  • Julie Pédrono
  • Myriam Bormans
  • Enora Briand
  • Pascal Claquin
  • Yvan Lagadeuc


Freshwater cyanobacteria can produce large amount of mucilage, particularly during large blooms. The production of these carbon-rich exopolymers (EPS) should influence the carbon-to-nutrient ratios of the organic matter (OM), which are regularly used as a proxy for the herbivorous food quality. However, little is known about the consequences of EPS production on the carbon-to-nutrient ratio of the OM. Two EPS forms can be distinguished: the free fraction composed of soluble extracellular polymeric substances (S-EPS) and the particulate fraction corresponding to the transparent exopolymer particles (TEP). The aim of the study was to determine whether the TEP and S-EPS productions by cyanobacteria influence the carbon-to-nutrient ratios of the particulate OM (POM). Five cyanobacteria species were grown in batch culture and characterized in terms of photosynthetic activity, EPS production, and C, N, P contents. The variability in EPS production was compared with the variability in stoichiometry of the POM. Most of cyanobacteria live in association with heterotrophic bacteria (HB) within the mucilage. The effect of the presence/absence of HB on EPS production and the carbon-to-nutrient ratios of the POM was also characterized for the cyanobacteria Microcystis aeruginosa. We showed that TEP production increased the carbon-to-nutrient ratios of the POM in the absence of HB, while the stoichiometry did not significantly change when HB were present. The C:N ratio of the POM decreased with production of S-EPS by the five species. Lastly, the three colonial species (Chroococcales) tend to produce more TEP than the two filamentous species (Oscillatoriales), with the two picocyanobacteria being the most productive of both TEP and S-EPS.


Transparent exopolymer particles Mucilage Stoichiometry Microcystis aeruginosa 



This research was funded by a grant from CNRS-UMR 6553 Ecobio and research funds from the University of Rennes (‘Action incitative, Projets scientifiques émergents 2011’) and from the french INSU-EC2CO program (‘Microflux’ 2012). We thank Nathalie Josselin-Le Bris and Marie-Paule Briand for laboratory assistance. Bio-chemical analysis, microscopy and experimental chambers were supported by the common technical centers from the UMR Ecobio: the Analysis Biogeochemical center (ABGC), the optical and digital imaging center (COIN) and the Ecology experimental center (ECOLEX). We thank the two anonymous referees for helpful comments on an earlier version of the manuscript.

Supplementary material

10452_2015_9550_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 kb)


  1. Aminot A, Chaussepied M (1983) Manuel des analyses en milieu marin. CNEXO, BrestGoogle Scholar
  2. Andersen RA (2005) Algal culturing techniques. Academic Press, San DiegoGoogle Scholar
  3. Azam F, Smith DC, Steward GF, Hagström A (1994) Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb Ecol 28:167–179CrossRefPubMedGoogle Scholar
  4. Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36:1078–1090CrossRefGoogle Scholar
  5. Banse K (1974) On the interpretation of data for the carbon-to-nitrogen ratio of phytoplankton. Limnol Oceanogr 19:695–699CrossRefGoogle Scholar
  6. Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P et al (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3:314–325CrossRefPubMedGoogle Scholar
  7. Bertilsson S, Jones JB (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, pp 3–24Google Scholar
  8. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefPubMedGoogle Scholar
  9. Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87(5):1325–1330CrossRefPubMedGoogle Scholar
  10. Boersma M, Kreutzer C (2002) Life at the edge: is food quality really of minor importance at low quantities? Ecology 83(9):2552–2561CrossRefGoogle Scholar
  11. Briand E, Yéprémian C, Humbert JF, Quiblier C (2008) Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (Cyanobacteria) strains under different environmental conditions. Environ Microbiol 10(12):3337–3348CrossRefPubMedGoogle Scholar
  12. Briand E, Bormans M, Quiblier C, Salençon M-J, Humbert J-F (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS ONE 7:e29981PubMedCentralCrossRefPubMedGoogle Scholar
  13. Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria Associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749PubMedCentralCrossRefPubMedGoogle Scholar
  14. Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22CrossRefGoogle Scholar
  15. Callieri C, Stockner JG (2002) Freshwater autotrophic picoplankton: a review. J Limnol 61:1–14CrossRefGoogle Scholar
  16. Casamatta DEA (2000) Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa kutzing. Microb Ecol 41:64–73CrossRefGoogle Scholar
  17. Choueri RB, Melao MDGG, Lombardi AT, Vieira AAH (2007) Effects of cyanobacterium exopolysaccharides on life-history of Ceriodaphnia cornuta SARS. J Plankton Res 29:339–345CrossRefGoogle Scholar
  18. Chrzanowski TH, Kyle M, Elser JJ, Sterner RW (1996) Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquat Microb Ecol 11:119–125CrossRefGoogle Scholar
  19. Claquin P, Probert I, Lefebvre S, Véron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11CrossRefGoogle Scholar
  20. Cole JJ, Likens GE, Strayer DL (1982) Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria [Mirror Lake, New Hampshire, algae]. Limnol Oceanogr 27:1080–1090CrossRefGoogle Scholar
  21. Costas E, López-Rodas V, Toro FJ, Flores-Moya A (2008) The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford’s law. Aquat Bot 89:341–343CrossRefGoogle Scholar
  22. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93CrossRefPubMedGoogle Scholar
  23. Danger M, Leflaive J, Oumarou C, Ten-Hage L, Lacroix G (2007a) Control of phytoplankton? Bacteria interactions by stoichiometric constraints. Oikos 116:1079–1086Google Scholar
  24. Danger M, Oumarou C, Benest D, Lacroix G (2007b) Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct Ecol 21:202–210CrossRefGoogle Scholar
  25. De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175CrossRefGoogle Scholar
  26. De Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281CrossRefGoogle Scholar
  27. Decho AW, Lopez GR (1993) Exopolymer microenvironments of microbial flora: multiple and interactive effects on trophic relationships. Limnol Oceanogr 38:1633–1645CrossRefGoogle Scholar
  28. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) A colorimetric method for the determination of sugars. Nature 28:350–356Google Scholar
  29. Dutz J, Klein Breteler WCM, Kramer G (2005) Inhibition of copepod feeding by exudates and transparent exopolymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. Harmful Algae 4:929–940CrossRefGoogle Scholar
  30. Eilers P, Peeters J (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215CrossRefGoogle Scholar
  31. Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar Ecol Prog Ser 219:1–10CrossRefGoogle Scholar
  32. Engel A, Delille B, Jacquet S, Riebesell U, Rochelle-Newall E, Terbruggen A et al (2004) Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquat Microb Ecol 34:93–104CrossRefGoogle Scholar
  33. Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol 10:15–27CrossRefGoogle Scholar
  34. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  35. Gärdes A, Ramaye Y, Grossart HP, Passow U, Ullrich MS (2012) Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N:P ratios. Mar Ecol Prog Ser 461:1–14CrossRefGoogle Scholar
  36. Gicquel A, Francez A-J, Delhaye T, Gruau G, Hallaire V, Binet F (2012) Understanding the fate and linkage of N and S in earthworm-engineered peat soil by coupling stable isotopes and nano-scale secondary ion mass spectrometry. Biogeochemistry 112(1–3):165–177. doi: 10.1007/s10533-012-9714-3 Google Scholar
  37. Gilbert M, Wilhelm C, Richter M (2000) Bio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (P–I) curves in four representative phytoplankton species. J Plant Physiol 157:307–314CrossRefGoogle Scholar
  38. Grossart HP, Simon M, Logan BE (1997) Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol Oceanogr 42:1651–1659CrossRefGoogle Scholar
  39. Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814CrossRefGoogle Scholar
  40. Huisman J, Matthijs HCP, Visser PM (eds) (2005) Harmful cyanobacteria. Springer, DordrechtGoogle Scholar
  41. International Organization of Standardization (1999) Water quality—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). ISO 8245:1999 I.8Google Scholar
  42. Jensen TC, Verschoor AM (2004) Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshw Biol 49:1138–1151CrossRefGoogle Scholar
  43. Johnk KD, Huisman J, Sharples J, Sommeijer BP, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512CrossRefGoogle Scholar
  44. Klausmeier CA, Litchman E, Levin SA (2004) Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr 49:1463–1470CrossRefGoogle Scholar
  45. Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. NZ J Mar Freshw Res 21:457–465CrossRefGoogle Scholar
  46. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112CrossRefGoogle Scholar
  47. Ling SC, Alldredge AL (2003) Does the marine copepod Calanus pacificus consume transparent exopolymer particles (TEP)? J Plankton Res 25:507–515CrossRefGoogle Scholar
  48. Liu H, Buskey EJ (2000) Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the texas brown tide alga, Aureoumbra lagunensis (Pelagophyceae). J Phycol 36:71–77CrossRefGoogle Scholar
  49. López-Sandoval DC, Rodríguez-Ramos T, Cermeno P, Marañón E (2013) Exudation of organic carbon by marine phytoplankton: dependence on taxon and cell size. Mar Ecol Prog Ser 477:53–60CrossRefGoogle Scholar
  50. Marañón E, Cermeño P, López-Sandoval DC, Rodríguez-Ramos T, Sobrino C, Huete-Ortega M et al (2013) Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol Lett 16:371–379CrossRefPubMedGoogle Scholar
  51. Mari X, Kiørboe T (1996) Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat. J Plankton Res 18:969–986CrossRefGoogle Scholar
  52. Mari X, Beauvais S, Lemée R, Pedrotti ML (2001) Non-Redfield C: N ratio of transparent exopolymeric particles in the northwestern Mediterranean Sea. Limnol Oceanogr 46:1831–1836CrossRefGoogle Scholar
  53. Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164CrossRefGoogle Scholar
  54. Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial. R Package Version, pp 1–43Google Scholar
  55. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333CrossRefGoogle Scholar
  56. Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep Sea Res II 42:99–109CrossRefGoogle Scholar
  57. Passow U, Alldredge AL (1999) Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica? J Plankton Res 21:2203–2217CrossRefGoogle Scholar
  58. Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T et al (2010) Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J 4:1215–1223. doi: 10.1038/ismej.2010.53 CrossRefPubMedGoogle Scholar
  59. Post AF, deWit R, Mur LR (1985) Interaction between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J Plankton Res 7:487–495CrossRefGoogle Scholar
  60. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Redfield CA, Ketchum HB, Richards AF (1963) The influence of organisms on the composition of sea-water. In: Hill NM (ed) The composition of seawater. Comparative and descriptive oceanography. The sea: ideas and observations on progress in the study of the seas. Wiley, New York, pp 26–77Google Scholar
  62. Reynolds CS (2006) The ecology of phytoplankton. Ecology, biodiversity and conservation. Cambridge University Press, CambridgeGoogle Scholar
  63. Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45CrossRefGoogle Scholar
  64. Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27CrossRefPubMedGoogle Scholar
  65. Rohrlack T, Christiansen G, Kurmayer R (2013) Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 79:2642–2647. doi: 10.1128/AEM.03499-12 PubMedCentralCrossRefPubMedGoogle Scholar
  66. Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. Photosynth Mech Effects 5:4253–4258Google Scholar
  67. Shen H, Niu Y, Xie P, Tao M, Yang XI (2011) Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56:1065–1080CrossRefGoogle Scholar
  68. Shibata K, Benson AA, Calvin M (1954) The absorption spectra of suspensions of living micro-organisms. Biochim Biophys Acta 15:461–470CrossRefPubMedGoogle Scholar
  69. Simon M, Grossart H-P, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211CrossRefGoogle Scholar
  70. Staats N, De Winder B, Stal L, Mur L (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169CrossRefGoogle Scholar
  71. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  72. Sugiura N (1978) Further analysts of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods 7:13–26CrossRefGoogle Scholar
  73. Svane R, Eriksen NT (2015) Exopolysaccharides are partly growth associated products in Microcystis flosaquae. J Appl Phycol 27:163–170CrossRefGoogle Scholar
  74. Thornton DCO (2002) Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol 37:149–161CrossRefGoogle Scholar
  75. Underwood G, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40:1243–1253CrossRefGoogle Scholar
  76. Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition and pathways of production. J Phycol 40:293–304CrossRefGoogle Scholar
  77. Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Glob Change Biol 9:818–825CrossRefGoogle Scholar
  78. Van de Waal DB, Verschoor AM, Verspagen JM, Van Donk E, Huisman J (2010) Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–152CrossRefGoogle Scholar
  79. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM–POM continuum. Mar Chem 92:67–85CrossRefGoogle Scholar
  80. Vieira AAH, Ortolano PIC, Giroldo D, Oliveira MJD, Bittar TB, Lombardi AT et al (2008) Role of hydrophobic extracellular polysaccharide of Aulacoseira granulata (Bacillariophyceae) on aggregate formation in a turbulent and hypereutrophic reservoir. Limnol Oceanogr 53:1887–1899CrossRefGoogle Scholar
  81. Worm J, Søndergaard M (1998) Alcian blue-stained particles in a eutrophic lake. J Plankton Res 20:179–186CrossRefGoogle Scholar
  82. Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microb Ecol 39:116–127CrossRefPubMedGoogle Scholar
  83. Yéprémian C, Gugger MF, Briand E, Catherine A, Berger C, Quiblier C, Bernard C (2007) Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res 41:4446–4456CrossRefPubMedGoogle Scholar
  84. Zhang M, Shi X, Yu Y, Kong F (2011) The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. J Phycol 47:524–532CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alexandrine Pannard
    • 1
    Email author
  • Julie Pédrono
    • 1
  • Myriam Bormans
    • 1
  • Enora Briand
    • 1
  • Pascal Claquin
    • 2
    • 3
  • Yvan Lagadeuc
    • 1
  1. 1.CNRS-UMR 6553 Ecobio, OSURUniversity of Rennes 1RennesFrance
  2. 2.BOREAUniversité de Caen Basse-NormandieCaenFrance
  3. 3.BOREA CNRS 7208, IRD-207, MNHN, UPMCUCBNCaenFrance

Personalised recommendations