Skip to main content
Log in

Production of exopolymers (EPS) by cyanobacteria: impact on the carbon-to-nutrient ratio of the particulate organic matter

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Freshwater cyanobacteria can produce large amount of mucilage, particularly during large blooms. The production of these carbon-rich exopolymers (EPS) should influence the carbon-to-nutrient ratios of the organic matter (OM), which are regularly used as a proxy for the herbivorous food quality. However, little is known about the consequences of EPS production on the carbon-to-nutrient ratio of the OM. Two EPS forms can be distinguished: the free fraction composed of soluble extracellular polymeric substances (S-EPS) and the particulate fraction corresponding to the transparent exopolymer particles (TEP). The aim of the study was to determine whether the TEP and S-EPS productions by cyanobacteria influence the carbon-to-nutrient ratios of the particulate OM (POM). Five cyanobacteria species were grown in batch culture and characterized in terms of photosynthetic activity, EPS production, and C, N, P contents. The variability in EPS production was compared with the variability in stoichiometry of the POM. Most of cyanobacteria live in association with heterotrophic bacteria (HB) within the mucilage. The effect of the presence/absence of HB on EPS production and the carbon-to-nutrient ratios of the POM was also characterized for the cyanobacteria Microcystis aeruginosa. We showed that TEP production increased the carbon-to-nutrient ratios of the POM in the absence of HB, while the stoichiometry did not significantly change when HB were present. The C:N ratio of the POM decreased with production of S-EPS by the five species. Lastly, the three colonial species (Chroococcales) tend to produce more TEP than the two filamentous species (Oscillatoriales), with the two picocyanobacteria being the most productive of both TEP and S-EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aminot A, Chaussepied M (1983) Manuel des analyses en milieu marin. CNEXO, Brest

    Google Scholar 

  • Andersen RA (2005) Algal culturing techniques. Academic Press, San Diego

    Google Scholar 

  • Azam F, Smith DC, Steward GF, Hagström A (1994) Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb Ecol 28:167–179

    Article  CAS  PubMed  Google Scholar 

  • Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36:1078–1090

    Article  Google Scholar 

  • Banse K (1974) On the interpretation of data for the carbon-to-nitrogen ratio of phytoplankton. Limnol Oceanogr 19:695–699

    Article  CAS  Google Scholar 

  • Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P et al (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson S, Jones JB (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, pp 3–24

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87(5):1325–1330

    Article  PubMed  Google Scholar 

  • Boersma M, Kreutzer C (2002) Life at the edge: is food quality really of minor importance at low quantities? Ecology 83(9):2552–2561

    Article  Google Scholar 

  • Briand E, Yéprémian C, Humbert JF, Quiblier C (2008) Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (Cyanobacteria) strains under different environmental conditions. Environ Microbiol 10(12):3337–3348

    Article  CAS  PubMed  Google Scholar 

  • Briand E, Bormans M, Quiblier C, Salençon M-J, Humbert J-F (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS ONE 7:e29981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria Associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22

    Article  CAS  Google Scholar 

  • Callieri C, Stockner JG (2002) Freshwater autotrophic picoplankton: a review. J Limnol 61:1–14

    Article  Google Scholar 

  • Casamatta DEA (2000) Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa kutzing. Microb Ecol 41:64–73

    Article  Google Scholar 

  • Choueri RB, Melao MDGG, Lombardi AT, Vieira AAH (2007) Effects of cyanobacterium exopolysaccharides on life-history of Ceriodaphnia cornuta SARS. J Plankton Res 29:339–345

    Article  CAS  Google Scholar 

  • Chrzanowski TH, Kyle M, Elser JJ, Sterner RW (1996) Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquat Microb Ecol 11:119–125

    Article  Google Scholar 

  • Claquin P, Probert I, Lefebvre S, Véron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11

    Article  Google Scholar 

  • Cole JJ, Likens GE, Strayer DL (1982) Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria [Mirror Lake, New Hampshire, algae]. Limnol Oceanogr 27:1080–1090

    Article  CAS  Google Scholar 

  • Costas E, López-Rodas V, Toro FJ, Flores-Moya A (2008) The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford’s law. Aquat Bot 89:341–343

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  Google Scholar 

  • Danger M, Leflaive J, Oumarou C, Ten-Hage L, Lacroix G (2007a) Control of phytoplankton? Bacteria interactions by stoichiometric constraints. Oikos 116:1079–1086

    CAS  Google Scholar 

  • Danger M, Oumarou C, Benest D, Lacroix G (2007b) Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct Ecol 21:202–210

    Article  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281

    Article  Google Scholar 

  • Decho AW, Lopez GR (1993) Exopolymer microenvironments of microbial flora: multiple and interactive effects on trophic relationships. Limnol Oceanogr 38:1633–1645

    Article  CAS  Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) A colorimetric method for the determination of sugars. Nature 28:350–356

    CAS  Google Scholar 

  • Dutz J, Klein Breteler WCM, Kramer G (2005) Inhibition of copepod feeding by exudates and transparent exopolymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. Harmful Algae 4:929–940

    Article  Google Scholar 

  • Eilers P, Peeters J (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar Ecol Prog Ser 219:1–10

    Article  CAS  Google Scholar 

  • Engel A, Delille B, Jacquet S, Riebesell U, Rochelle-Newall E, Terbruggen A et al (2004) Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquat Microb Ecol 34:93–104

    Article  Google Scholar 

  • Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol 10:15–27

    Article  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Gärdes A, Ramaye Y, Grossart HP, Passow U, Ullrich MS (2012) Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N:P ratios. Mar Ecol Prog Ser 461:1–14

    Article  Google Scholar 

  • Gicquel A, Francez A-J, Delhaye T, Gruau G, Hallaire V, Binet F (2012) Understanding the fate and linkage of N and S in earthworm-engineered peat soil by coupling stable isotopes and nano-scale secondary ion mass spectrometry. Biogeochemistry 112(1–3):165–177. doi:10.1007/s10533-012-9714-3

    Google Scholar 

  • Gilbert M, Wilhelm C, Richter M (2000) Bio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (P–I) curves in four representative phytoplankton species. J Plant Physiol 157:307–314

    Article  CAS  Google Scholar 

  • Grossart HP, Simon M, Logan BE (1997) Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol Oceanogr 42:1651–1659

    Article  CAS  Google Scholar 

  • Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814

    Article  Google Scholar 

  • Huisman J, Matthijs HCP, Visser PM (eds) (2005) Harmful cyanobacteria. Springer, Dordrecht

    Google Scholar 

  • International Organization of Standardization (1999) Water quality—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). ISO 8245:1999 I.8

  • Jensen TC, Verschoor AM (2004) Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshw Biol 49:1138–1151

    Article  Google Scholar 

  • Johnk KD, Huisman J, Sharples J, Sommeijer BP, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Levin SA (2004) Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr 49:1463–1470

    Article  Google Scholar 

  • Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. NZ J Mar Freshw Res 21:457–465

    Article  CAS  Google Scholar 

  • Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Article  Google Scholar 

  • Ling SC, Alldredge AL (2003) Does the marine copepod Calanus pacificus consume transparent exopolymer particles (TEP)? J Plankton Res 25:507–515

    Article  CAS  Google Scholar 

  • Liu H, Buskey EJ (2000) Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the texas brown tide alga, Aureoumbra lagunensis (Pelagophyceae). J Phycol 36:71–77

    Article  CAS  Google Scholar 

  • López-Sandoval DC, Rodríguez-Ramos T, Cermeno P, Marañón E (2013) Exudation of organic carbon by marine phytoplankton: dependence on taxon and cell size. Mar Ecol Prog Ser 477:53–60

    Article  Google Scholar 

  • Marañón E, Cermeño P, López-Sandoval DC, Rodríguez-Ramos T, Sobrino C, Huete-Ortega M et al (2013) Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol Lett 16:371–379

    Article  PubMed  Google Scholar 

  • Mari X, Kiørboe T (1996) Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat. J Plankton Res 18:969–986

    Article  Google Scholar 

  • Mari X, Beauvais S, Lemée R, Pedrotti ML (2001) Non-Redfield C: N ratio of transparent exopolymeric particles in the northwestern Mediterranean Sea. Limnol Oceanogr 46:1831–1836

    Article  CAS  Google Scholar 

  • Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164

    Article  CAS  Google Scholar 

  • Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial. R Package Version, pp 1–43

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep Sea Res II 42:99–109

    Article  CAS  Google Scholar 

  • Passow U, Alldredge AL (1999) Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica? J Plankton Res 21:2203–2217

    Article  CAS  Google Scholar 

  • Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T et al (2010) Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J 4:1215–1223. doi:10.1038/ismej.2010.53

    Article  CAS  PubMed  Google Scholar 

  • Post AF, deWit R, Mur LR (1985) Interaction between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J Plankton Res 7:487–495

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Redfield CA, Ketchum HB, Richards AF (1963) The influence of organisms on the composition of sea-water. In: Hill NM (ed) The composition of seawater. Comparative and descriptive oceanography. The sea: ideas and observations on progress in the study of the seas. Wiley, New York, pp 26–77

    Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Ecology, biodiversity and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45

    Article  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  CAS  PubMed  Google Scholar 

  • Rohrlack T, Christiansen G, Kurmayer R (2013) Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 79:2642–2647. doi:10.1128/AEM.03499-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. Photosynth Mech Effects 5:4253–4258

    CAS  Google Scholar 

  • Shen H, Niu Y, Xie P, Tao M, Yang XI (2011) Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56:1065–1080

    Article  CAS  Google Scholar 

  • Shibata K, Benson AA, Calvin M (1954) The absorption spectra of suspensions of living micro-organisms. Biochim Biophys Acta 15:461–470

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Grossart H-P, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Staats N, De Winder B, Stal L, Mur L (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sugiura N (1978) Further analysts of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods 7:13–26

    Article  Google Scholar 

  • Svane R, Eriksen NT (2015) Exopolysaccharides are partly growth associated products in Microcystis flosaquae. J Appl Phycol 27:163–170

    Article  CAS  Google Scholar 

  • Thornton DCO (2002) Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol 37:149–161

    Article  Google Scholar 

  • Underwood G, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40:1243–1253

    Article  CAS  Google Scholar 

  • Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition and pathways of production. J Phycol 40:293–304

    Article  CAS  Google Scholar 

  • Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Glob Change Biol 9:818–825

    Article  Google Scholar 

  • Van de Waal DB, Verschoor AM, Verspagen JM, Van Donk E, Huisman J (2010) Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–152

    Article  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM–POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  • Vieira AAH, Ortolano PIC, Giroldo D, Oliveira MJD, Bittar TB, Lombardi AT et al (2008) Role of hydrophobic extracellular polysaccharide of Aulacoseira granulata (Bacillariophyceae) on aggregate formation in a turbulent and hypereutrophic reservoir. Limnol Oceanogr 53:1887–1899

    Article  CAS  Google Scholar 

  • Worm J, Søndergaard M (1998) Alcian blue-stained particles in a eutrophic lake. J Plankton Res 20:179–186

    Article  Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microb Ecol 39:116–127

    Article  CAS  PubMed  Google Scholar 

  • Yéprémian C, Gugger MF, Briand E, Catherine A, Berger C, Quiblier C, Bernard C (2007) Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res 41:4446–4456

    Article  PubMed  Google Scholar 

  • Zhang M, Shi X, Yu Y, Kong F (2011) The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. J Phycol 47:524–532

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from CNRS-UMR 6553 Ecobio and research funds from the University of Rennes (‘Action incitative, Projets scientifiques émergents 2011’) and from the french INSU-EC2CO program (‘Microflux’ 2012). We thank Nathalie Josselin-Le Bris and Marie-Paule Briand for laboratory assistance. Bio-chemical analysis, microscopy and experimental chambers were supported by the common technical centers from the UMR Ecobio: the Analysis Biogeochemical center (ABGC), the optical and digital imaging center (COIN) and the Ecology experimental center (ECOLEX). We thank the two anonymous referees for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandrine Pannard.

Additional information

Handling editor: Bas W. Ibelings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannard, A., Pédrono, J., Bormans, M. et al. Production of exopolymers (EPS) by cyanobacteria: impact on the carbon-to-nutrient ratio of the particulate organic matter. Aquat Ecol 50, 29–44 (2016). https://doi.org/10.1007/s10452-015-9550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-015-9550-3

Keywords

Navigation