Aquatic Ecology

, Volume 49, Issue 4, pp 499–512 | Cite as

Regional-scale patterns of habitat preference for the seahorse Hippocampus reidi in the tropical estuarine environment

  • L. A. AylesworthEmail author
  • J. H. Xavier
  • T. P. R. Oliveira
  • G. D. Tenorio
  • A. F. Diniz
  • I. L. Rosa


When dealing with species where local information on distribution and habitat preferences is insufficient or lacking (data poor), it is challenging for managers to determine effective measures for conservation. The purpose of this paper was to identify trends in habitat preference for a data-deficient seahorse species, Hippocampus reidi in northeastern Brazil. This is also the first study to use mixed-effect models to compare multiple datasets at a regional level for any seahorse species. Generalized linear mixed-effects models determined that shallow depths, warm temperatures and the number of holdfasts were the most important habitat variables in predicting seahorse presence in tropical estuaries. A log-likelihood ratio *G test found no difference between the proportion of adults and juveniles using various holdfasts, although adults used a greater diversity of holdfasts. The lack of difference in adult and juvenile habitat suggests either that H. reidi may not experience ontogenetic shifts in habitat or that habitat is not determining the distribution patterns of adults and juveniles within estuaries. Alternatively, habitat preference may be coupled with other factors to drive seahorse distribution within estuaries. Due to estuary importance in providing holdfast diversity and other conditions to seahorse use, conservation and management for H. reidi should also consider appropriate protection of estuarine areas, thus safeguarding habitat for both juveniles and adults.


Syngnathids Brazil Mangrove Ecology Mixed effects Data-poor 



The authors would like to thank the Universidade Federal da Paraiba and the Universidade Federal do Ceará, for training and support with fieldwork. This research was funded by the William J. Fulbright Scholarship Foundation, the PADI Foundation and the Fundação Grupo Boticário de Proteção à Natureza. We thank P. Malloy for his statistical insights and the research assistants from Ceará, Mangue Vivo and the Colonia de Pescadores No. 17 Itarema. Special thanks are due to Glaura Barros and E. Romao for their logistical support throughout the duration of fieldwork. Research permits were provided by Seretaria Estadual do Meio Ambiente do Ceará (SEMACE) and SISBIO.


This research was funded by the William J. Fulbright Scholarship Foundation and the Fundação Grupo Boticário de Proteção à Natureza.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal rights

This research followed animal ethical protocols as required by the Federal University of Paraiba, Brazil.


  1. Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349CrossRefGoogle Scholar
  2. Aylesworth L, Lawson JM, Laksanawimol P, Ferber P, Loh TL. New records of the Japanese seahorse Hippocampus mohnikei Bleeker 1853, in Southeast Asia lead to updates in range, habitat and threats. J Fish Biol (submitted)Google Scholar
  3. Bates D, Maechler M, Bolker B (2011) Lme4: linear mixed-effects models using S4 classes., R package version 0.999375-42.
  4. Baum JK, Meeuwig JJ, Vincent ACJ (2003) Bycatch of seahorses (Hippocampus erectus) in a Gulf of Mexico shrimp fishery. Fish Bull 101:721–731Google Scholar
  5. Beck MW, Heck KLJR, Able KW, Childers DL et al (2003) The role of nearshore ecosystems as fish and shellfish nurseries. Issues Ecol 11:1–12Google Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300Google Scholar
  7. Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25:60–83. doi: 10.3102/10769986025001060 CrossRefGoogle Scholar
  8. Blaber SJM (1997) Fish and fisheries of tropical estuaries. Chapman and Hall, LondonGoogle Scholar
  9. Blaber SJM (2000) Tropical estuarine fishes: ecology, exploitation and conservation. Fish and aquatic resource series no. 7. Blackwell, OxfordGoogle Scholar
  10. Bland L, Collen B, Orme C, Bielby J (2014) Predicting the conservation status of data-deficient species. Conserv Biol 29:250–259. doi: 10.1111/cobi.12372 CrossRefPubMedGoogle Scholar
  11. Bolker B, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens M, White JS (2008) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefGoogle Scholar
  12. Caldwell IR, Vincent ACJ (2012) Revisiting two sympatric European seahorse species: apparent decline in the absence of exploitation. Aquat Conserv Mar Freshw Ecosyst 22:427–435. doi: 10.1002/aqc.2238 CrossRefGoogle Scholar
  13. Castellano-Galindos GA, Cantera JR, Espinosa S, Mejia-ladino LM (2011) Use of local ecological knowledge, scientist’ observation and grey literature to assess marine species at risk in a tropical eastern Pacific estuary. Aquat Conserv Mar Freshw Ecosyst 21:37–48. doi: 10.1002/aqc.1163 CrossRefGoogle Scholar
  14. Choi Y, Rho S, Park H, Kang D (2012) Population characteristics of two seahorses, Hippocampus coronatus and Hippocampus mohnikei, around seagrass beds in the southern coastal waters of Korea. Icthyol Res 59:235–241. doi: 10.1007/s10228-012-0285-z CrossRefGoogle Scholar
  15. Crawley MJ (2007) The R book. Wiley, West SussexCrossRefGoogle Scholar
  16. Curtis JMR, Vincent ACJ (2005) Distribution of sympatric seahorse species along a gradient of habitat complexity in a seagrass-dominated community. Mar Ecol Prog Ser 291:81–91CrossRefGoogle Scholar
  17. Curtis JMR, Ribeiro J, Erzini K, Vincent ACJ (2007) A conservation trade-off ? Interspecific differences in seahorse responses to experimental changes in fishing effort. Aquat Conserv Mar Freshw Ecosyst 17:468–484. doi: 10.1002/aqc CrossRefGoogle Scholar
  18. Dahlgren C, Kellison G, Adams A, Gillanders B, Kendall M, Layman C, Ley J, Nagelkerken I, Serafy J (2006) Marine nurseries and effective juvenile habitats: concepts and applications. Mar Ecol Prog Ser 312:291–295. doi: 10.3354/meps312291 CrossRefGoogle Scholar
  19. Dias T, Rosa IL (2003) Habitat preferences of a seahorse species, Hippocampus reidi (Teleostei: Syngnathidae) in Brazil. J Ichthyol Aquat Biol 6:165–176Google Scholar
  20. Elliott M, Whitfield AD, Potter IC, Blaber SJM, Cyrus DP, Nordlie FG, Harrison TD (2007) The guild approach to categorizing estuarine fish assemblages: a global review. Fish Fish 8:241–268CrossRefGoogle Scholar
  21. Faunce CH, Serafy JE (2006) Mangroves as fish habitat: 50 years of field studies. Mar Ecol Prog Ser 318:1–18CrossRefGoogle Scholar
  22. Ferrer-Paris J, Sanchez Mercado A, Rodriguez-Clark K, Rodriguez J, Rodriguez G (2014) Using limited data to detect changes in species distributions: insights from Amazon parrots in Venezuela. Biol Conserv 173:133–143. doi: 10.1016/j.biocon.2013.07.032 CrossRefGoogle Scholar
  23. Foster S, Vincent ACJ (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61. doi: 10.1111/j.1095-8649.2004.00429.x CrossRefGoogle Scholar
  24. Foster S, Vincent ACJ (2005) Enhancing sustainability of the international trade in seahorses with a single minimum size limit. Conserv Biol 19:1044–1050CrossRefGoogle Scholar
  25. Gajdzik L, Vanreusel A, Koedam N, Reubens J, Mathumbi AWN (2014) The mangrove forests as nursery habitats for the ichthyofauna of Mida Creek (Kenya, East Africa). J Mar Biol Assoc UK 94:865–877CrossRefGoogle Scholar
  26. García VB, Lucifora LO, Myers RA (2008) The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc R Soc Lond B Biol Sci 275:83–89. doi: 10.1098/rspb.2007.1295 CrossRefGoogle Scholar
  27. Gratwicke B, Speight MR (2006) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66:650–667CrossRefGoogle Scholar
  28. Gristina M, Cardone F, Carlucci R, Castellano L, Passarelli S, Corriero G (2014) Abundance, distribution and habitat preference of Hippocampus guttulatus and Hippocampus hippocampus in a semi-enclosed central Mediterranean marine area. Mar Ecol. doi: 10.1111/maec.12116 Google Scholar
  29. Gutierrez LP, Cuberto YP, Wong R, Monteagudo P (2011) Study of seahorse populations in two areas in the North coast of La Havana and Pinar del Rio, Cuba. Rev Cienc Mar Costeras 3:171–181Google Scholar
  30. Harasti D, Martin-Smith K, Gladstone W (2012) Population dynamics and life history of a geographically restricted seahorse, Hippocampus whitei. J Fish Biol 81:1297–1314. doi: 10.1111/j.1095-8649.2012.03406.x CrossRefPubMedGoogle Scholar
  31. Harasti D, Martin-Smith K, Gladstone W (2014) Ontogenetic and sex-based differences in habitat preferences and site fidelity of White’s seahorse Hippocampus whitei. J Fish Biol. doi: 10.1111/jfb.12492 PubMedGoogle Scholar
  32. Hellyer C, Harasti D, Poore A (2011) Manipulating artificial habitats to benefit seahorses in Sydney Harbour, Australia. Aquat Conserv Mar Freshw Ecosyst 21:582–589. doi: 10.1002/aqc.1217 CrossRefGoogle Scholar
  33. Honda K, Nakamura Y, Nakaoka M, Uy WH, Fortes MD (2013) Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS One 8:e65735PubMedCentralCrossRefPubMedGoogle Scholar
  34. IBAMA (2011) Proposta de plano de gestão para o uso sustentável de cavalos-marinhos do Brasil. Instituto Brasileira do Meia Ambiente, BrasiliaGoogle Scholar
  35. Igulu MM, Nagelkerken I, Dorenbosch M, Grol MGG, Harborne AR, Kimirei IA, Mumby PJ, Olds AD, Mgaya YD (2014) Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region. PLoS One 9:e114715PubMedCentralCrossRefPubMedGoogle Scholar
  36. IUCN (2012) The IUCN red list of threatened species. Version 2012.1. IUCN Global Species Programme Red List Unit, Cambridge. Accessed 19 June 2012
  37. James PL, Heck KL (1994) The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J Exp Mar Biol Ecol 176:187–200CrossRefGoogle Scholar
  38. Jiao Y, Cortes E, Andrew K, Guo F (2011) Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach. Ecol Appl 21:2691–2708CrossRefPubMedGoogle Scholar
  39. Johannes RE (1998) The case for data-less marine resource management: examples from tropical nearshore finfisheries. Trends Ecol Evol 13:243–246CrossRefPubMedGoogle Scholar
  40. Kendrick AJ, Hyndes GA (2003) Patterns in the abundance and size-distribution of syngnathid fishes among habitats in a seagrass-dominated marine environment. Estuar Coast Shelf Sci 57:631–640. doi: 10.1016/S0272-7714(02)00402-X CrossRefGoogle Scholar
  41. Kendrick AJ, Hyndes GA (2005) Variations in the dietary compositions of morphologically diverse syngnathid fishes. Environ Biol Fishes 72:415–427CrossRefGoogle Scholar
  42. Krumme U, Liang TH (2004) Tidal-induced changes in a copepod-dominated zooplankton community in a macrotidal mangrove channel in Northern Brazil. Zool Stud 43:404–414Google Scholar
  43. Le Port A, Lavery S, Montgomery J (2012) Conservation of coastal stingrays: seasonal abundance and population structure of the short-tailed stingray Dasyatis brevicaudata at a marine protected área. ICES J Mar Sci 69:1427–1435. doi: 10.1093/icesjms/fss120 CrossRefGoogle Scholar
  44. Ley JA, McIvor CC, Montague CL (1999) Fishes in mangrove prop-root habitats of Northeastern Florida Bay: distinct assemblages across an estuarine gradient. Estuar Coast Shelf Sci 48:701–723CrossRefGoogle Scholar
  45. López-López E, Sedeño-Díaz JE, Romero FL, Trujillo-Jiménez P (2009) Spatial and seasonal distribution patterns of fish assemblages in the Rio Champoton, southeastern Mexico. Rev Fish Biol Fish 19:127–142. doi: 10.1007/s11160-008-9093-y CrossRefGoogle Scholar
  46. Lourie SA, Vincent ACJ, Hall HJ (1999) Seahorses: an identification guide to the world’s seahorse species and their conservation. Project Seahorse, LondonGoogle Scholar
  47. Lourie SA, SJ Foster, Cooper EWT, Vincent ACJ (2004) A guide to the identification of seahorses. Project Seahorse and TRAFFIC North America, Washington, DCGoogle Scholar
  48. MacDonald JA, Weis JS (2013) Fish community features correlate with prop root epibionts in Caribbean mangroves. J Exp Mar Biol Ecol 441:90–98CrossRefGoogle Scholar
  49. Mai ACG, Rosa IL (2009) Aspectos ecológicos do cavalo-marinho Hippocampus reidi no estuário Camurupim/Cardoso, Piauí, Brasil, fornecendo subsídios para a criação de uma Área de Proteção Integral Aspectos ecológicos do cavalo-marinho Hippocampus reidi no estuário Camurupim. Biota Neotrop 9:85–91CrossRefGoogle Scholar
  50. Mai ACG, Velasco G (2012) Population dynamics and reproduction of wild longsnout seahorse Hippocampus reidi. J Mar Biol Assoc UK 92:1–7. doi: 10.1017/S0025315411001494 CrossRefGoogle Scholar
  51. Martin-Smith K, Vincent ACJ (2005) Seahorse declines in the Derwent estuary, Tasmania in the absence of fishing pressure. Biol Conserv 123:533–545. doi: 10.1016/j.biocon.2005.01.003 CrossRefGoogle Scholar
  52. Masonjones HD, Rose E, McRae LB, Dixon DL (2010) An examination of the population dynamics of syngnathid fishes within Tampa Bay, Florida, USA. Curr Zool 56:118–133Google Scholar
  53. Ministério do Meio Ambiente (2014) Portaria no. 445. Brasilia, Brazil.Google Scholar
  54. Morgan SK, Vincent ACJ (2007) The ontogeny of habitat associations in the tropical tiger tail seahorse Hippocampus comes Cantor, 1850. J Fish Biol 71:701–724. doi: 10.1111/j.1095-8649.2007.01535.x CrossRefGoogle Scholar
  55. Neves LM, Teixeira TP, Araujo FG (2011) Structure and dynamics of distinct fish assemblages in three reaches (upper, middle and lower) of an open tropical estuary in Brazil. Mar Ecol Evol Perspect 32:115–131CrossRefGoogle Scholar
  56. Oliveira VMD, Freret-meurer NV (2012) Distribuiçao vertical do cavalo-marinho Hippocampus reidi Ginsburg, 1933 na região de Arraial do Cabo, Rio de Janeiro, Brasil. Biotemas 25:59–66. doi: 10.5007/2175-7925.2012v25n2p59 CrossRefGoogle Scholar
  57. Potter IC, Tweedley JR, Elliot M, Whitfield AK (2013) The ways in which fish use estuaries: a refinement and expansion of the guild approach. Fish Fish. doi: 10.1111/faf.12050 Google Scholar
  58. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0.
  59. Ramos JAA, Barletta M, Dantas DV, Lima ARA, Costa MF (2011) Influence of moon phase on fish assemblages in estuarine mangrove tidal creeks. J Fish Biol 78:344–354. doi: 10.111/j.1095-8649.2010.02851.x CrossRefPubMedGoogle Scholar
  60. Rosa IL, Alves R, Bonifácio K, Mourão JS, Osório FM, Oliveira TPR, Nottingham MC (2005) Fishers’ knowledge and seahorse conservation in Brazil. J Ethnobiol Ethnomed. doi: 10.1186/1746-4269-1-12 Google Scholar
  61. Rosa IL, Oliveira TPR, Castro ALC, Moraes L, Xavier JHA, Nottingham MC, Dias TLP et al (2007) Population characteristics, space use and habitat associations of the seahorse Hippocampus reidi (Teleostei: Syngnathidae). Neotrop Icthyol 5:405–414CrossRefGoogle Scholar
  62. Rypel AL, Layman CA, Arrington DA (2007) Water depth modifies relative predation risk for a motile fish taxon in Bahamian tidal creeks. Estuaries Coasts 30:518–525CrossRefGoogle Scholar
  63. Sheaves M (1995) Large lutjanid and serranid fishes in tropical estuaries: are they adults or juveniles? Mar Ecol Prog Ser 129:31–40CrossRefGoogle Scholar
  64. Smith TM, Hindell JS, Jenkins GP, Connolly RM, Keough MJ (2011) Edge effects in patchy seagrass landscapes: the role of predation in determining fish distribution. J Exp Mar Biol Ecol 399:8–16. doi: 10.1016/j.jembe.2011.01.010 CrossRefGoogle Scholar
  65. Stimmelmayr R, Sullivan M, Latchman V (2008) Recent sightings of longsnout seahorse, Hippocampus reidi in the marine environment of St. Kitts, Lesser Antilles. In: Proceedings of the 11th international coral reef symposium, vol 26, pp 1392–1393Google Scholar
  66. Teixeira RL, Musick JA (1995) Trophic ecology of two congeneric pipefishes (Syngnathidae) of the lower York River, Virginia. Environ Biol Fishes 43:295–309CrossRefGoogle Scholar
  67. Teske PR, Lockyear JF, Hecht T, Kaiser H (2007) Does the endangered Knysna seahorse, Hippocampus capensis, have a preference for aquatic vegetation type, cover or height? Afr Zool 42:23–30CrossRefGoogle Scholar
  68. Verweij MC, Nagelkerken I, De Graaff D, Peeters M, Bakker EJ, Van Der Velde G (2006) Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Mar Ecol Prog Ser 306:257–268. doi: 10.3354/meps306257 CrossRefGoogle Scholar
  69. Vincent ACJ, Foster S, Koldewey HJ (2011) Conservation and management of seahorses and other Syngnathidae. J Fish Biol 78:1681–1724. doi: 10.1111/j.1095-8649.2011.03003.x CrossRefPubMedGoogle Scholar
  70. Xavier JHDA, Cordeiro CAMM, Tenório GD, Diniz ADF, Paulo Junior EPN, Rosa RS, Rosa I (2012) Fish assemblage of the Mamanguape Environmental Protection Area, NE Brazil: abundance, composition and microhabitat availability along the mangrove-reef gradient. Environ Prot 10:109–122Google Scholar
  71. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • L. A. Aylesworth
    • 1
    • 2
    Email author
  • J. H. Xavier
    • 2
  • T. P. R. Oliveira
    • 2
    • 3
  • G. D. Tenorio
    • 2
  • A. F. Diniz
    • 2
  • I. L. Rosa
    • 2
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  2. 2.Laboratório de Peixes – Ecologia e ConservaçãoUniversidade Federal do ParaíbaJoão PessoaBrazil
  3. 3.Universidade Estadual do ParaîbaJoão PessoaBrazil

Personalised recommendations