Aquatic Ecology

, Volume 49, Issue 4, pp 401–416 | Cite as

Photosynthetic characteristics of the benthic diatom species Nitzschia frustulum (Kützing) Grunow isolated from a soda pan along temperature-, sulfate- and chloride gradients

  • Edina Lengyel
  • Attila W. Kovács
  • Judit Padisák
  • Csilla Stenger-Kovács
Article

Abstract

The Carpathian Basin hosts a number of small, shallow, saline, alkaline ponds. As being endorheic basins, they are highly threatened by the climate change and response of biota to changing climate has been largely unexplored. We investigated the effects of salinity changes on the photosynthetic activity of Nitzschia frustulum, which is one of the main dominant taxa of the saline lakes in the Fertő-Hanság Region of the Carpathian Basin. The photosynthetic activity of the species was measured along temperature (5, 10, 15, 20, 25, 30, 35, 40 °C), light (0–8–35–70–110–200–400–800–1200 µmol m−2 s−1), SO42− (0–50–600–1200–2400–3600–4800 mg L−1) and Cl (0–36–437.5–875–1750–3500–5250 mg L−1) gradients under laboratory conditions in photosynthetron. The conductivity optimal of N. frustulum was around 5600 µS cm−1 with wide salinity tolerance. The species preferred the HCO3–SO42−-type waters since its photosynthetic activity (3.62 mg C mg Chl-a−1 h−1) was more than twice higher than in HCO3–Cl-type media. Its photosynthesis saturated at very low-light intensity, and photoinhibition was not observed during the experiments. The maximal photosynthesis was measured at 28–29 °C. However, above 30 °C, the decline of photosynthesis of N. frustulum can be forecasted.

Keywords

Nitzschia frustulum Photosynthetic activity Salinity Temperature Light Saline lakes 

References

  1. Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49:177–190. doi:10.2307/3566025 CrossRefGoogle Scholar
  2. Anneville O, Domaizon I, Kerimoglu O, Rimet F, Jacquet S (2015) Blue-green algae in a “Greenhouse Century”? New insights from field data on climate change impacts on cyanobacteria abundance. Ecosystems 18:441–458CrossRefGoogle Scholar
  3. APHA (1998) Standard methods for the examination of water and wastewater. United Book Press, Inc., BaltimoreGoogle Scholar
  4. Barker HA (1935) Photosynthesis in diatoms. Archiv für Mikrobiologie 6:141–156. doi:10.1007/bf00407284 CrossRefGoogle Scholar
  5. Bauld J (1981) Occurrence of benthic microbial mats in saline lakes. In: Williams WD (ed) Salt Lakes, vol 5. Developments in hydrobiology. Springer, pp 87–111. doi:10.1007/978-94-009-8665-7_8
  6. Belay A, Fogg GE (1978) Photoinhibition of photosynthesis in Asterionella formosa (Bacillariophyceae). J Phycol 14:341–347. doi:10.1111/j.1529-8817.1978.tb00310.x CrossRefGoogle Scholar
  7. Blinn DW (1993) Diatom community structure along physicochemical gradients in saline lakes. Ecology 74:1246–1263. doi:10.2307/1940494 CrossRefGoogle Scholar
  8. Boros E, Molnár A, Olajos P, Takács A, Jakab G, Dévai G (2006) Nyílt vízfelszínű szikes élőhelyek elterjedése, térinformatikai adatbázisa és természetvédelmi helyzete a Pannon biogeográfiai régióban. Geographical distribution, GIS database and nature conservation status of opened sodic (alkaline) water bodies in Pannonic Biogeographical Region). Hidrológiai Közlöny 86:146–147Google Scholar
  9. Boros E, Horváth Z, Wolfram G, Vörös L (2014) Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann Limnol Int J Limnol 50:59–69CrossRefGoogle Scholar
  10. Boyer J (1976) Water deficits and photosynthesis. In: Kozlowsky TT (ed) Water deficits and plant growth, vol 4. Academic Press, Inc., London, pp 153–190Google Scholar
  11. Brotas V, Catarino F (1995) Microphytobenthos primary production of Tagus estuary intertidal flats (Portugal). Neth J Aquatic Ecol 29:333–339. doi:10.1007/bf02084232 CrossRefGoogle Scholar
  12. Busse S, Jahn R, Schulz C-J (1999) Desalinization of running waters: II. Benthic diatom communities: A comparative field study on responses to decreasing salinities. Limnol Ecol Manag Inland Waters 29:465–474. doi:10.1016/S0075-9511(99)80053-X CrossRefGoogle Scholar
  13. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365CrossRefPubMedGoogle Scholar
  14. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007. doi:10.1128/aem.02874-09 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Christensen J, Christensen O (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi:10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  16. Cole J, Howarth R, Nolan S, Marino R (1986) Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 2:179–196. doi:10.1007/bf02180194 CrossRefGoogle Scholar
  17. Cumming B, Smol J (1993) Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). In: van Dam H (ed) Twelfth international diatom symposium, vol 90. Developments in hydrobiology. Springer, pp 179–196. doi:10.1007/978-94-017-3622-0_20
  18. Dauta A, Devaux J, Piquemal F, Boumnich L (1990) Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221–226. doi:10.1007/bf00041459 CrossRefGoogle Scholar
  19. De Deckker P (1988) Biological and sedimentary facies of Australian salt lakes. Palaeogeogr Palaeoclimatol Palaeoecol 62:237–270. doi:10.1016/0031-0182(88)90056-9 CrossRefGoogle Scholar
  20. de Tezanos Pinto P, Litchman E (2010) Eco-physiological responses of nitrogen-fixing cyanobacteria to light. Hydrobiologia 639:63–68. doi:10.1007/s10750-009-0014-4 CrossRefGoogle Scholar
  21. Dokulil M (2013) Impact of climate warming on European inland waters. Inland Waters 4:27–40CrossRefGoogle Scholar
  22. El-Sabaawi R, Harrison PJ (2006) Interactive effects of irradiance and temperature on the photosynthetic physiology of the pennate diatom Pseudo-nitzschia granii (Bacillariophyceae) from the northeast subarctic Pacific. J Phycol 42:778–785. doi:10.1111/j.1529-8817.2006.00246.x CrossRefGoogle Scholar
  23. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Princeton University Press, OxfordGoogle Scholar
  24. Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:629–636. doi:10.1007/bf00239374 CrossRefGoogle Scholar
  25. Fritz SC, Juggins S, Battarbee RW (1993) Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can J Fish Aquat Sci 50:1844–1856. doi:10.1139/f93-207 CrossRefGoogle Scholar
  26. Gasse F, Juggins S, Khelifa LB (1995) Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeogr Palaeoclimatol Palaeoecol 117:31–54. doi:10.1016/0031-0182(94)00122-O CrossRefGoogle Scholar
  27. George G, Hurley M, Hewitt D (2007) The impact of climate change on the physical characteristics of the larger lakes in the English Lake District. Freshw Biol 52:1647–1666. doi:10.1111/j.1365-2427.2007.01773.x CrossRefGoogle Scholar
  28. Goudie AS (2003) Great warm deserts of the world: landscapes and evolution. Oxford University Press, OxfordGoogle Scholar
  29. Grant W (2006) Alkaline environments and biodiversity. In: Gerday C, Glansdorff N (eds) Extremophiles. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. UNESCO, Eolss, OxfordGoogle Scholar
  30. Gyllström M et al (2005) The role of climate in shaping zooplankton communities of shallow lakes. Limnol Oceanogr 50:2008–2021CrossRefGoogle Scholar
  31. Hammer UT (1981) Primary production in saline lakes. In: Williams WD (ed) Salt Lakes, vol 5. Developments in hydrobiology. Springer, pp 47–57. doi:10.1007/978-94-009-8665-7_5
  32. Hammer UT (1986) Saline lake ecosystems of the world, vol 59. Springer, DordrechtGoogle Scholar
  33. Hammer UT, Shamess J, Haynes R (1983) The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105:1–26. doi:10.1007/bf00025173 CrossRefGoogle Scholar
  34. Harley CDG et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x CrossRefPubMedGoogle Scholar
  35. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463 CrossRefGoogle Scholar
  36. Hill W (1996) Effects of light. In: Stevenson R, Bothwell ML, Lowe RL (eds) Algal ecology, freshwater benthic ecosystem. Academic Press, San Diego, pp 121–148Google Scholar
  37. Hopkins W, Hüner N (2004a) Plant Environmental Stress Physiology. In: Hopkins W, Hüner N (eds) Introduction to Plant Physiology, 3rd edn. Wiley, Danvers, pp 459–493Google Scholar
  38. Hopkins W, Hüner N (2004b) Plants and Inorganic Nutrients, 3rd edn. Wiley, DanversGoogle Scholar
  39. Horváth Z, Vad CF, Vörös L, Boros E (2013) The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds. Freshw Biol 58:430–440. doi:10.1111/fwb.12071 CrossRefGoogle Scholar
  40. Ionescu V, Năstăsescu M, Spiridon L, Bulgăreanu VC (1998) The biota of Romanian saline lakes on rock salt bodies: a review. Int J Salt Lake Res 7:45–80. doi:10.1023/a:1009025228069 Google Scholar
  41. Jarman AOH, Jones ED (1982) Llyfr Du Caerfyrddin. Gwasg Prifysgol Cymru, CardiffGoogle Scholar
  42. Kemp AES, Pike J, Pearce RB, Lange CB (2000) The “Fall dump”—a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep Sea Res Part II Top Stud Oceanogr 47:2129–2154. doi:10.1016/S0967-0645(00)00019-9 CrossRefGoogle Scholar
  43. Keresztes ZG et al (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769. doi:10.1007/s00792-012-0472-x CrossRefPubMedGoogle Scholar
  44. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Kirst G (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Biol 41:21–53CrossRefGoogle Scholar
  46. Krammer K, Lange-Bertalot H (1997) Süßwasserflora von Mitteleuropa. vol Band 2/2: Bacillariaceae, Epithemiaceae, Surirellaceae. Bacillariophyceae. Gustav Fischer Verlag, HeidelbergGoogle Scholar
  47. Krumbein WE, Cohen Y, Shilo M (1977) Solar lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol Oceanogr 22:635–655CrossRefGoogle Scholar
  48. Leatherbarrow R (2009) GraFit Data Analysis Software for Windows, 7.0.3 edn. Erithacus Software Ltd., HorleyGoogle Scholar
  49. Lehman JT, Botkin DB, Likens GE (1975) The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnol Oceanogr 20:343–364CrossRefGoogle Scholar
  50. Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639CrossRefGoogle Scholar
  51. Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495. doi:10.2216/i0031-8884-38-6-437.1 CrossRefGoogle Scholar
  52. Mason IM, Guzkowska MAJ, Rapley CG, Street-Perrott FA (1994) The response of lake levels and areas to climatic change. Clim Change 27:161–197. doi:10.1007/bf01093590 CrossRefGoogle Scholar
  53. Molinero JC, Anneville O, Souissi S, Lainé L, Gerdeaux D (2007) Decadal changes in water temperature and ecological time-series in Lake Geneva, Europe-detecting relationships with the subtropical Atlantic climate variability. Clim Res 34:15–23CrossRefGoogle Scholar
  54. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x CrossRefPubMedGoogle Scholar
  55. Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359–372. doi:10.1029/95gb01070 CrossRefGoogle Scholar
  56. Oppenheim DR (1991) Seasonal changes in epipelic diatoms along an intertidal shore, Berrow Flats, Somerset. J Mar Biol Assoc UK 71:579–596. doi:10.1017/S0025315400053169 CrossRefGoogle Scholar
  57. Padisák J (2004) Phytoplankton. In: O’Sullivan P, Reynolds CS (eds) The lakes handbook, vol 1., Limnology and limnotic ecologyBlackwell, Oxford, pp 251–309Google Scholar
  58. Pálffy K et al (2014) Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan. Extremophiles 18:111–119CrossRefPubMedGoogle Scholar
  59. Pan Y, Rao DVS, Mann KH (1996) Acclimation to low light intensity in photosynthesis and growth of Pseudo-nitzschia multiseris Hasle, a neurotoxigenic diatom. J Plankton Res 18:1427–1438. doi:10.1093/plankt/18.8.1427 CrossRefGoogle Scholar
  60. Passy SI (2007) Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat Bot 86:171–178. doi:10.1016/j.aquabot.2006.09.018 CrossRefGoogle Scholar
  61. Pinckney JL, Zingmark R (1991) Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Mar Ecol Prog Ser 76:81CrossRefGoogle Scholar
  62. Platt T, Gallegos C, Harrison W (1981) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:103–111Google Scholar
  63. Radchenko I, Il’Yash L (2006) Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity. Biol Bull 33:242–247CrossRefGoogle Scholar
  64. Reynolds C (1988) Functional morphology and the adaptive strategies of freshwater phytoplankton. Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 388–433Google Scholar
  65. Reynolds C, Kinne O (1997) Excellence in ecology. In: Kinne O (ed) Vegetation process processes in the pelagic model for ecosystem theory. Ecology Institute, Oldendorf/LuheGoogle Scholar
  66. Roessig J, Woodley C, Cech J Jr, Hansen L (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275. doi:10.1007/s11160-004-6749-0 CrossRefGoogle Scholar
  67. Roubeix V, Lancelot C (2008) Effect of salinity on growth, cell size and silicification of an euryhaline freshwater diatom: Cyclotella meneghiniana Kütz. Trans Waters Bull 2:31–38Google Scholar
  68. Roux M, Servant-Vildary S, Servant M (1991) Inferred ionic composition and salinity of a Bolivian Quaternary lake, as estimated from fossil diatoms in the sediments. Hydrobiologia 210:3–18. doi:10.1007/bf00014319 CrossRefGoogle Scholar
  69. Saros JE, Fritz SC (2002) Resource competition among saline-lake diatoms under varying N/P ratio, salinity and anion composition. Freshw Biol 47:87–95. doi:10.1046/j.1365-2427.2002.00781.x CrossRefGoogle Scholar
  70. Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42. doi:10.1016/j.seares.2004.01.007 CrossRefGoogle Scholar
  71. Schlösser UG (1994) SAG—Sammlung von Algenkulturen at the University of Göttingen Catalogue of Strains 1994. Bot Acta 107:113–186. doi:10.1111/j.1438-8677.1994.tb00784.x CrossRefGoogle Scholar
  72. Servant Vildary S (1984) Les diatomées des lacs sursalés boliviens: sous-classe Pennatophycidées: 1. Famille des Nitzschiacées. Cahiers ORSTOM Série Géologie 14:35–53Google Scholar
  73. Servant-Vildary S, Roux M (1990) Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. In: Comín F, Northcote T (eds) Saline Lakes, vol 59. Developments in hydrobiology. Springer, pp 267–290. doi:10.1007/978-94-009-0603-7_23
  74. Smol JP, Walker IR, Leavitt PR (1991) Paleolimnology and hindcasting climatic trends. Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 24:1240–1246Google Scholar
  75. Sobrino C, Neale PJ (2007) Short-term and long-term effects of temperature on photosynthesis in the diatom Thalassiosira pseudonana under UVR exposure. J Phycol 43:426–436CrossRefGoogle Scholar
  76. Somogyi B, Vörös L, Pálffy K, Székely G, Bartha C, Keresztes Z (2014) Picophytoplankton predominance in hypersaline lakes (Transylvanian Basin, Romania). Extremophiles 18:1075–1084. doi:10.1007/s00792-014-0685-2 CrossRefPubMedGoogle Scholar
  77. Stenger-Kovács C et al (2014) Vanishing world: alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4(383):396Google Scholar
  78. Stramski D, Sciandra A, Claustre H (2002) Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol Oceanogr 47:392–403CrossRefGoogle Scholar
  79. Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486. doi:10.1007/s11099-005-0001-6 CrossRefGoogle Scholar
  80. Sullivan MJ, Currin CA (2000) Community structure and functional dynamics of benthic microalgae in salt marshes. In: Weinstein M, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Springer, New York, pp 81–106Google Scholar
  81. Taylor WR (1964) Light and photosynthesis in intertidal benthic diatoms. Helgoländer Meeresun 10:29–37. doi:10.1007/bf01626096 CrossRefGoogle Scholar
  82. Team RDC (2010) R: A language and environment for statistical computing, 2.11.0 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  83. Trobajo R, Cox EJ, Quintana XD (2004) The effects of some environmental variables on the morphology of Nitzschia frustulum (Bacillariophyta), in relation its use as a bioindicator. Nova Hedwigia 79:433–445. doi:10.1127/0029-5035/2004/0079-0433 CrossRefGoogle Scholar
  84. Trobajo R, Rovira L, Ector L, Wetzel CE, Kelly M, Mann DG (2012) Morphology and identity of some ecologically important small Nitzschia species. Diatom Res 28:37–59. doi:10.1080/0269249x.2012.734531 CrossRefGoogle Scholar
  85. Underwood GJC (1994) Seasonal and spatial variation in epipelic diatom assemblages in the severn estuary. c Res 9:451–472. doi:10.1080/0269249x.1994.9705319 Google Scholar
  86. Underwood G, Phillips J, Saunders K (1998) Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur J Phycol 33:173–183. doi:10.1080/09670269810001736673 CrossRefGoogle Scholar
  87. Üveges V, Vörös L, Padisák J, Kovács A (2011) Primary production of epipsammic algal communities in Lake Balaton (Hungary). Hydrobiologia 660:17–27. doi:10.1007/s10750-010-0396-3 CrossRefGoogle Scholar
  88. V.-Balogh K, Németh B, Vörös L (2009) Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds. Hydrobiologia 632:91–105. doi:10.1007/s10750-009-9830-9 CrossRefGoogle Scholar
  89. Veres AJ, Pienitz R, Smol JP (1995) Lake water salinity and periphytic diatom succession in three subarctic lakes, Yukon Territory, Canada. Arctic 48:63–70CrossRefGoogle Scholar
  90. Vörös L, Boros E (2010) Nodularia willei Gardn. tömegprodukció: a planktonikus és bentonikus elsődleges termelés peremfeltételei egy kiskunsági szikes tóban (Kelemen-szék). Acta Biologica Debrecina Oecologia Hungarica 22:139–152Google Scholar
  91. Warren JK (2006) Depositional chemistry and hydrology. In: Evaporites: sediments, resources and hydrocarbons. pp 59–138Google Scholar
  92. Wetzel RG, Likens GE (2000) Limnological analyses. Springer, New YorkCrossRefGoogle Scholar
  93. Whitney DE, Darley WM (1983) Effect of light intensity upon salt marsh benthic microalgal photosynthesis. Mar Biol 75:249–252. doi:10.1007/bf00406009 CrossRefGoogle Scholar
  94. Wilhelm S, Hintze T, Livingstone DM, Adrian R (2006) Long-term response of daily epilimnetic temperature extrema to climate forcing. Can J Fish Aquat Sci 63:2467–2477. doi:10.1139/f06-140 CrossRefGoogle Scholar
  95. Williams WD (1981) Inland salt lakes: an introduction. Hydrobiologia 81–82:1–14. doi:10.1007/bf00048701 CrossRefGoogle Scholar
  96. Williams W (2005) Lakes in arid environments. In: O’Sullivan P, Reynolds C (eds) The lakes handbook, vol 2., Lake restoration and rehabilitationBlackwell, Oxford, pp 200–240Google Scholar
  97. Wilson S, Cumming B, Smol J (1994) Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity reconstructions. J Paleolimnol 12:197–221. doi:10.1007/bf00678021 CrossRefGoogle Scholar
  98. Ziemann H (1971) Die Wirkung des Salzgehaltes auf die Diatomeenflora als Grundlage für eine biologische Analyse und Klassifikation der Binnengewässer. Limnologica 8:505–525Google Scholar
  99. Ziemann H (1982) Indikatoren für den Salzgehalt der Binnengewässer- Halobiensystem. In: Bremg G, Tümpling WV (eds) Ausgewählte Methoden der Gewässeruntersuchung, vol II. Biologische, mikrobiologische und toxikologische Methoden. JenaGoogle Scholar
  100. Ziemann H, Kies L, Schulz C-J (2001) Desalinization of running waters: III. Changes in the structure of diatom assemblages caused by a decreasing salt load and changing ion spectra in the river Wipper (Thuringia, Germany). Limnol Ecol Manag Inland Waters 31:257–280. doi:10.1016/S0075-9511(01)80029-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Edina Lengyel
    • 1
  • Attila W. Kovács
    • 2
  • Judit Padisák
    • 1
    • 3
  • Csilla Stenger-Kovács
    • 3
  1. 1.MTA-PE, Limnoecology Research Group of the Hungarian Academy of SciencesVeszprémHungary
  2. 2.Balaton Limnological InstituteMTA Centre for Ecological ResearchTihanyHungary
  3. 3.Department of LimnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations