Aquatic Ecology

, Volume 49, Issue 1, pp 91–98 | Cite as

Is ectoparasite burden related to host density? Evidence from nearshore fish larvae off the coast of central Chile

  • Pamela Palacios-Fuentes
  • Mauricio F. Landaeta
  • María T. González
  • Guido Plaza
  • F. Patricio Ojeda
  • Gabriela Muñoz
Article

Abstract

Variations in parasite populations may be temporal and/or spatial and can occur in relation to environmental factors. However, such changes may also occur due to differences in host population density, which is one of the main factors that affect the abundance of directly transmitted parasites. Fish larvae and their ectoparasites were collected via ichthyoplankton samplings during a 3-year survey near the coast of central Chile. To estimate the variations in ectoparasite abundance that occurred with fluctuations in host density, the prevalence and intensity of ectoparasites (copepods and isopods) were calculated and compared with the density (i.e., the larval fish abundance standardized to 1,000 m−3) of six species of nearshore fish larvae that belonged to the families Gobiesocidae, Labrisomidae and Tripterygiidae. Copepods (Penellidae and Caligidae) and isopods (Cryptoniscidae) were found to be parasitizing the fish larvae. Pennellid copepods were the most prevalent ectoparasite, and the clingfish Gobiesox marmoratus (Gobiesocidae) was the most parasitized fish species (12.81 %). The individual burdens of pennellid, caligid and isopod ectoparasites failed to exhibit any correlation with the larval densities of four fish species (i.e., Auchenionchus crinitus, Auchenionchus microcirrhis, Sicyases sanguineus and Helcogrammoides chilensis). Nonetheless, the prevalence and intensity of the pennellid copepods exhibited a significant and positive correlation with the density of a gobisesocid species. In contrast, the prevalence of pennellid copepods (5.10 %) exhibited a significant but negative correlation with the density of tripterygid fish. Ectoparasite abundance is a result of a species-specific relationship with their hosts, but the evidence found suggests no correlation between ectoparasite burden and host density in larval fishes from coastal environments.

Keywords

Host density Tripterygiidae Gobiesocidae Prevalence Pennellidae Caligidae 

Notes

Acknowledgments

This research was funded by projects Fondecyt 1100424, which was adjudicated to FPO, GP and MFL, and Fondecyt 1120868, which was adjudicated to GM, MFL and MTG. We thank Randy Finke, Eduardo González, Jorge Contreras, David Ortiz, Camilo Rodríguez, Carlos González and Cristian Acevedo for assistance with the sampling surveys and the collection of the material and Nicole Jahnsen-Guzmán and Camila Ardiles for their help with the revision of the fish larvae and larval ectoparasites. Thanks are also due to two anonymous reviewers who helped improve the first drafts of this manuscript.

Supplementary material

10452_2015_9507_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 89 kb)

References

  1. Altman I, Byers JE (2014) Large-scale spatial variation in parasite communities influenced by anthropogenic factors. Ecology 95(7):1876–1887. doi:10.1890/13-0509.1 CrossRefPubMedGoogle Scholar
  2. Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–247CrossRefGoogle Scholar
  3. Arneberg P, Skorping A, Grenfell B, Read AF (1998) Host densities as determinants of abundance in parasite communities. Proc R Soc Lond B 265:1283–1289. doi:10.1098/rspb.1998.0431 CrossRefGoogle Scholar
  4. Barber I, Huntingford FA (1996) Parasite infection alters schooling behaviour: deviant positioning of helminth-infected minnows in conspecific groups. Proc R Soc Lond B Biol Sci 263:1095–1102. doi:10.1098/rspb.1996.0161 CrossRefGoogle Scholar
  5. Bush AO, Lafferty KD, Lotz JM, Shostaka AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583CrossRefPubMedGoogle Scholar
  6. Castro R, Baeza H (1986) Premetamorphosis stages of two Pennellids (Copepoda, Siphonostomatoida) from their definitive hosts. Crustaceana 50:166–175CrossRefGoogle Scholar
  7. Castro R, Baeza H (1989) Characters for the pennellid taxonomy based on Peniculus, Metapeniculus, Lernaeenicus and Lernaeocera specimens revision with SEM. Estud Oceanol 8:21–45Google Scholar
  8. Castro R, Santos MJ (2013) Metazoan ectoparasites of Atlantic mackerel, Scomber scombrus (Teleostei: Scombridae): macro- and microhabitat distribution. Parasitol Res 112:3579–3586. doi:10.1007/s00436-013-3543-8 CrossRefPubMedGoogle Scholar
  9. Chambers CA, Dick TA (2005) Trophic structure of one deep-sea benthic fish community in the eastern Canadian Arctic: application of food, parasites and multivariate analysis. Environ Biol Fish 74:365–378. doi:10.1007/s10641-005-2922-0 CrossRefGoogle Scholar
  10. Contreras JE, Landaeta MF, Plaza G, Ojeda FP, Bustos CA (2013) The contrasting hatching patterns and larval growth of two sympatric clingfishes inferred by otolith microstructure analysis. Mar Freshw Res 64:157–167. doi:10.1071/MF12232 CrossRefGoogle Scholar
  11. Cribb TH, Pichelin S, Dufour V, Bray RA, Chauvet C, Faliex E, Galzin R, Lo CM, Lo-Yat A, Morand S, Rigny MC, Sasal P (2000) Parasites of recruiting coral reef fish larvae in New Caledonia. Int J for Parasitol 30:1445–1451. doi:10.1016/S0020-7519(00)00121-1 CrossRefGoogle Scholar
  12. Felley SM, Vecchione M, Hare SGF (1987) Incidence of ectoparasitic copepods on ichthyoplankton. Copeia 1987:778–782CrossRefGoogle Scholar
  13. Fellis KJ, Esch GW (2004) Community structure and seasonal dynamics of helminth parasites in Lepomis cyanellus and L. macrochirus from Charlie’s Pond, North Carolina: host size and species as determinants of community structure. J Parasitol 90(1):41–49. doi:10.1645/GE-3037 CrossRefPubMedGoogle Scholar
  14. Fogelman RM, Grutter AS (2008) Mancae of the parasitic cymothoid isopod, Anilorca apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27:685–693. doi:10.1007/s00338-008-0379-2 CrossRefGoogle Scholar
  15. George-Nascimento M (1996) Populations and assemblages of parasites in hake, Merluccius gayi, from the southeastern Pacific Ocean: stock implications. J Fish Biol 48:557–568. doi:10.1111/j.1095-8649.1996.tb01452.x CrossRefGoogle Scholar
  16. Grutter AS (1994) Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Mar Ecol Progr Ser 115:21–30CrossRefGoogle Scholar
  17. Grutter AS, Cribb TH, McCallum H, Pickering JL, McCormick MI (2010) Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis. Coral Reefs 29:31–40. doi:10.1007/s00338-009-0561-1 CrossRefGoogle Scholar
  18. Guegan JF, Morand S, Poulin R (2005) Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. In: Thomas F, Guégan JF, Renaud F (eds) Parasitism and ecosystems. Oxford University Press, Oxford, pp 22–42CrossRefGoogle Scholar
  19. Herrera G (1984) Parasitismo de juveniles de copépodos caligoideos sobre larvas de peces de la Bahía Coliumo (36 32′S; 75 57′W), Chile. Biol Pesq 13:31–38Google Scholar
  20. Herrera G (1990) Incidence of larval anchovy, Engraulis ringens, parasitized by caligid developmental stages. Bull Mar Sci 47:571–575Google Scholar
  21. Kennedy CR (1975) Ecological animal parasitology. Blackwell Scientific, OxfordGoogle Scholar
  22. Klimpel S, Palm HW, Busch MW, Kellermanns E, Rückert S (2006) Fish parasites in the Arctic deep-sea: poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish. Deep-Sea Res Part I 53:1167–1181. doi:10.1016/j.dsr.2006.05.009 CrossRefGoogle Scholar
  23. Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev Camb Philos Soc 69:187–206CrossRefPubMedGoogle Scholar
  24. Mansur L, Plaza G, Landaeta MF, Ojeda FP (2014) Planktonic duration in fourteen species of intertidal rocky fishes from the south eastern Pacific Ocean. Mar Freshw Res 65:901–909. doi:10.1071/MF13064 CrossRefGoogle Scholar
  25. May RM, Anderson RM (1978) Regulation and stability of host-parasite population interactions. II. Destabilizing processes. J Anim Ecol 47:249–267CrossRefGoogle Scholar
  26. Molinet C, Cáceres M, González MT, Carvajal J, Asencio G, Díaz M, Díaz P, Castro MT, Codjambassis J (2011) Population dynamic of early stages of Caligus rogercresseyi, in an embayment used for intensive salmon farms in Chilean inland seas. Aquaculture 312:62–71. doi:10.1016/j.aquaculture.2010.12.010
  27. Morand S, Poulin R (1998) Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol 12:717–727. doi:10.1023/A:1006537600093 CrossRefGoogle Scholar
  28. Morand S, Cribb TH, Kulbicki M, Rigby MC, Chauvet C, Dufour V, Faliex E, Galzin R, Lo C, Lo-Yat A, Pichelin SP, Sasal P (2000) Endoparasite species richness of New Caledonian butterfly fishes: host density and diet matter. Parasitology 121:65–73CrossRefPubMedGoogle Scholar
  29. Muñoz G, Cortés Y (2009) Parasite communities of a fish assemblage from the intertidal rocky zone of central Chile: similarity and host specificity between temporal and resident fish. Parasitology 136:1291–1303. doi:10.1017/S0031182009990758 CrossRefPubMedGoogle Scholar
  30. Muñoz G, Randhawa HS (2011) Monthly variation in the parasitic communities of the intertidal fish Scartichthys viridis (Blenniidae) from central Chile: are there seasonal patterns? Parasitol Res 109:53–62. doi:10.1007/s00436-010-2220-4 CrossRefPubMedGoogle Scholar
  31. Muñoz G, Valdebenito V, George-Nascimento M (2002) La dieta y la fauna de parásitos metazoos del torito Bovichthys chilensis Reagan, 1914 (Pisces: Bovichthydae) en la costa de Chile centro-sur: variaciones geográficas y ontogenéticas. Rev Chil Hist Nat 75:661–671CrossRefGoogle Scholar
  32. Muñoz G, Landaeta MF, Palacios-Fuentes P, López Z, González MT (2015) Identification of parasites in fish larvae from the coast of Chile: morphological and molecular analyses. Folia Parasitol (accepted)Google Scholar
  33. Narváez DA, Poulin E, Leiva G, Hernández E, Castilla JC, Navarrette SA (2004) Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont Shelf Res 24:279–292. doi:10.1016/j.csr.2003.09.008 CrossRefGoogle Scholar
  34. Negovetich NJ, Esch GW (2007) Long–term analysis of Charlie’s pond: fecundity and trematode communities of Helisoma anceps. J Parasitol 93:1311–1318. doi:10.1645/GE-1184.1 CrossRefPubMedGoogle Scholar
  35. Neira FJ, Miskiewicz AG, Trnski T (1998) Larvae of temperate Australian fishes: laboratory guide for larval fish identification. University of Western Australia Press, Western AustraliaGoogle Scholar
  36. Oliva ME, González MT (2004) Metazoan parasites of Sebastes capensis from two localities in northern Chile as tools for stock identification. J Fish Biol 64(1):170–175. doi:10.1111/j.1095-8649.2004.00295.x CrossRefGoogle Scholar
  37. Palacios-Fuentes P, Landaeta MF, Muñoz G, Plaza G, Ojeda FP (2012) The effects of parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts. Parasitol Res 111:1661–1671. doi:10.1007/s00436-012-3005-8 CrossRefPubMedGoogle Scholar
  38. Palacios-Fuentes P, Landaeta MF, Jahnsen-Guzmán N, Plaza G, Ojeda FP (2014) Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat Ecol 48:259–266. doi:10.1007/s10452-014-9481-4 CrossRefGoogle Scholar
  39. Pérez R (1979) Postembryonic development of Tripterygion chilensis Cancino, 1955, in Valparaíso Bay (Tripterygiidae: Perciformes). Rev Biol Mar 16:319–329Google Scholar
  40. Pérez R (1981) Desarrollo embrionario y larval de los pejesapos Sicyases sanguineus y Gobiesox marmoratus en la Bahía de Valparaíso, Chile, con notas sobre su reproducción (Gobiesocidae: Pisces). Invest Mar 9:1–24Google Scholar
  41. Plaza G, Landaeta MF, Espinoza CV, Ojeda FP (2013) Daily growth patterns of six species of young-of-the-year of Chilean intertidal fishes. J Mar Biol Assoc U K 93(2):389–395. doi:10.1017/S0025315412000859 CrossRefGoogle Scholar
  42. Rohde K (1984) Ecology of marine parasites. Helgol Meeresunters 37:5–33CrossRefGoogle Scholar
  43. Rohde K, Hayward C, Heap M (1995) Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 25(8):945–970CrossRefPubMedGoogle Scholar
  44. Simková A, Morand S, Matejusová I, Jurajda P, Gelnar M (2001) Local and regional influences on patterns of parasite species richness of central European fishes. Biodivers Conserv 10:511–525. doi:10.1023/A:1016658427730 CrossRefGoogle Scholar
  45. Uribe C, Folch H, Enríquez R, Morán G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56:486–503Google Scholar
  46. Violante-González J, Aguirre-Macedo ML, Vidal-Martínez VM (2008) Temporal variation in the helminth parasite communities of the pacific fat sleeper, Dormittor latifrons, from Tres Palos Lagoon, Guerrero, Mexico. J Parasitol 94(2):326–334. doi:10.1645/GE-1251.1

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pamela Palacios-Fuentes
    • 1
  • Mauricio F. Landaeta
    • 1
  • María T. González
    • 2
  • Guido Plaza
    • 3
  • F. Patricio Ojeda
    • 4
  • Gabriela Muñoz
    • 5
  1. 1.Laboratorio de Ictioplancton (LABITI), Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  2. 2.Instituto de Ciencias Naturales “Alexander von Humboldt”, Facultad de Ciencias del Mar y Recursos BiológicosUniversidad de AntofagastaAntofagastaChile
  3. 3.Escuela de Ciencias del Mar, Facultad de Recursos NaturalesPontificia Universidad Católica de ValparaísoValparaísoChile
  4. 4.Departamento de EcologíaPontificia Universidad Católica de ChileSantiago de ChileChile
  5. 5.Laboratorio de Parasitología Marina, Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile

Personalised recommendations