Skip to main content

Advertisement

Log in

Medium- and long-term temporal trends in the fish assemblage inhabiting a surf zone, analyzed by Bayesian generalized additive models

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The present study characterizes the fish assemblage in the surf zone of Cassino Beach, Rio Grande, Brazil, and analyzes temporal fluctuations in richness and abundance of these species in medium (months) and long terms (years), associating them also with abiotic covariates. Data were collected monthly between 1996 and 2012 at two locations. Bayesian generalized additive models (GAMs) were used as statistical tool, placing this study among few that have used Bayesian GAMs in Ecology. Our results show a decrease in both species richness and abundance of the most representative species, over the last 16 years, but no significant distinction between locations. Water temperature and salinity along with seasonality were the statistically most influential explanatory covariates to describe fluctuations in richness and abundance. Higher discharge rates of the three main rivers that flow into Patos Lagoon (Jacuí, Taquari, Camaquã) were associated with increased richness and abundance of some species in the assemblage. Hence, our findings show that medium- and long-term fluctuations in richness and species abundance are controlled by abiotic factors related to seasonal cycles (temperature) and productivity of the ecosystem. Long-term changes seem to be also related to man-induced factors and climate change; but further research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Able KW, Grothues TM, Rowe PM, Wuenschel MJ, Vasslides JM (2011) Near-surface larval and juvenile fish in coastal habitats: comparisons between the inner shelf and an estuary in the New York Bight during summer and fall. Estuar Coasts 34:726–738

    Article  Google Scholar 

  • Ayvazian SG, Hyndes GA (1995) Surf-zone fish assemblages in south-western Australia: do adjacent nearshore habitats and the warm Leeuwin Current influence the characteristics of the fish fauna? Mar Biol 122:527–536

    Article  Google Scholar 

  • Belitz C, Brezger A, Kneib T, Lang S (2009) BayesX—Bayesian inference in structured additive regression models. http://www.stat.uni-muenchen.de/~bayesx. Accessed March 2012

  • Bell KNI, Cowley PD, Whitfield AK (2001) Seasonality in frequency of marine access to an intermittently open estuary: implications for recruitment strategies. Estuar Coast Shelf Sci 52:327–337

    Article  Google Scholar 

  • Brown AC, McLachlan A (1990) Ecology of Sandy shores. Elsevier, New York

    Google Scholar 

  • Brown RL, Jacobs LA, Peet RK (2007) Species richness: small scale, encyclopedia of life sciences, vol 26. Wiley, New Jersey

    Google Scholar 

  • Caddy JF, Sharp GD (1986) An ecological framework for marine fishery investigations. FAO fisheries technical paper, Rome

  • Calliari LJ, Speranski N, Torronteguy M, Oliveira MB (2001) The mud banks of Cassino Beach, southern Brazil: characteristics, processes and effects. J Coast Res 34:318–325

    Google Scholar 

  • Calliari LJ, Holland KT, Pereira PS, Guedes RMC, Santo RE (2007) the influence of mud on the Inner Shelf, Shoreface, Beach and Surf Zone Morphodynamics—Cassino, Southern Brazil. Coast Sedim 07:1–11

    Google Scholar 

  • Calliari LJ, Winterwerp JC, Fernandes E, Cuchiara D, Vinzon SB, Sperle M, Holland KT (2009) Fine grain sediment transport and deposition in the Patos Lagoon—Cassino Beach sedimentary system. Cont Shelf Res 29:515–529

    Article  Google Scholar 

  • Castillo-Rivera M, Zárate-Hernandez R, Ortiz-Burgos S, Zavala-Hurtado J (2010) Diel and seasonal variability in the fish community structure of a mud-bottom estuarine habitat in the Gulf of Mexico. Mar Ecol 31:633–642

    Article  Google Scholar 

  • Chatfield C, Collins AJ (1980) Introduction to multivariate analysis. CRC Press, London

    Book  Google Scholar 

  • Dalla Rosa L, Ford JKB, Trites AW (2012) Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Cont Shelf Res 36:89–104

    Article  Google Scholar 

  • Denison DGT, Mallick BK, Smith AFM (1998) Automatic Bayesian curve fitting. J R Stat Soc B 60:333–350

    Article  Google Scholar 

  • Edwards AWF (1972) Likelihood. Cambridge Academic Press, Cambridge

    Google Scholar 

  • Eilers P, Marx B (1996) Flexible smoothing using B-splines and penalizes likelihood. Stat Sci 11:89–121

    Article  Google Scholar 

  • Fahrmeir L, Lang S (2001) Bayesian inference for generalized additive mixed models based on Markov random field prioris. Appl Stat 50:201–220

    Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. CRC Press, Boca Raton

    Google Scholar 

  • Fischer LG, Pereira LED, Vieira JP (2011) Peixes estuarinos e costeiros. Conscientia, Rio Grande

    Google Scholar 

  • Garcia AM, Vieira JP (2001) O aumento da diversidade de peixes no estuário da Lagoa dos Patos durante o episódio El Niño 1997–1998. Atlantica 23:85–96

    Google Scholar 

  • Garcia AM, Vieira JP, Winemiller KO, Grimm AM (2004) Comparison of 1982–1983 and 1997–1998 El Niño effects on the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil). Estuar Coasts 27:905–914

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin D (2013) Bayesian data analysis. CRC Press, Boca Raton

    Google Scholar 

  • Gibson RN, Robb L, Burrows MT, Ansell AD (1996) Tidal, diel and longer term changes in the distribution of fishes on a Scottish sandy beach. Mar Ecol Prog Ser 130:1–17

    Article  Google Scholar 

  • Gomes MP, Cunha MS, Zalmon IR (2003) Spatial and Temporal Variations of Diurnal Ichthyofauna on Surf-Zone of São Francisco do Itabapoana Beaches, Rio de Janeiro State, Brazil. Braz Arch Biol Technol 46:653–664

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. http://folk.uio.no/ohammer/past/. Accessed March 2012

  • Hardle W, Simar L (2007) Applied multivariate statistical analysis. Springer, Berlin

    Google Scholar 

  • Hastie TG, Tibshirani RJ (1990) Generalized additive models. CRC Press, Boca Raton

    Google Scholar 

  • Haynes PS, Brophy D, McGrath D, O’Callaghan R, Comerford S, Casburn P (2010) Annual and spatial variation in the abundance length and condition of juvenile turbot (Psetta maxima L.) on nursery grounds on the west coast of Ireland: 2000–2007. J Sea Res 64:494–504

    Article  Google Scholar 

  • Hubálek Z (2000) Measures of species diversity in ecology: an evaluation. Folia Zool 49:241–260

    Google Scholar 

  • Kéry M (2010) Introduction to WinBUGS for ecologists. Elsevier, London

    Google Scholar 

  • Kinas PG, Andrade HA (2010) Introdução à Análise Bayesiana (com R). Mais Que Nada, Porto Alegre

    Google Scholar 

  • Knox GA (2001) The Ecology of Sea Shores. CRC Press, Boca Raton

    Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper and Row, New York

    Google Scholar 

  • Kristiansen T, Drinkwater KF, Lough RG, Sundby S (2011) Recruitment variability in North Atlantic cod and match-mismatch dynamics. PLoS One 6:e17456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang S, Brezger A (2004) Bayesian P-splines. J Comput Gr Stat 13:183–212

    Article  Google Scholar 

  • Lima MSP, Vieira JP (2009) Variação espaço-temporal da ictiofauna da zona de arrebentação da Praia do Cassino, Rio Grande do Sul, Brasil. Zoologia 26:499–510

    Article  Google Scholar 

  • Lin X, Zhang D (1999) Inference in generalized additive mixed models by using smoothing splines. J R Stat Soc B 61:381–400

    Article  Google Scholar 

  • Lindley D (2000) The philosophy of statistics. Statistician 49:233–337

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Malden

    Google Scholar 

  • Margalef DR (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Martino EJ, Houde ED (2010) Recruitment of striped bass in Chesapeake Bay: spatial and temporal environmental variability and availability of zooplankton prey. Mar Ecol Prog Ser 409:213–228

    Article  Google Scholar 

  • McCarthy MA (2007) Bayesian methods for ecology. Cambridge University Press, New York

    Book  Google Scholar 

  • McIntosh RP (1967) An index of diversity and the relation of certain concepts to diversity. Ecology 48:392–404

    Article  Google Scholar 

  • McLachlan A, Brown AC (2006) The ecology of sandy shores. Academic Press, Burlington

    Google Scholar 

  • Menhinick EF (1964) A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45:859–861

    Article  Google Scholar 

  • Miranda LB, Castro BM, Kjerfve B (2002) Princípios de Oceanografia Física de Estuários. Editora Universidade de São Paulo, São Paulo

    Google Scholar 

  • Modde T, Ross ST (1981) Seasonality of fishes occupying a surf zone habitat in the Northern Gulf of Mexico. Fish Bull 78:911–922

    Google Scholar 

  • Mont’Alverne R, Moraes LE, Rodrigues FL, Vieira JP (2012) Do mud deposition events on sandy beaches affect surf zone ichthyofauna? A southern Brazilian case study. Estuar Coast Shelf Sci 102–103:116–125

    Article  Google Scholar 

  • Monteiro-Neto C, Cunha LPR, Musick JA (2003) Community structure of surf-zone fishes at Cassino Beach, Rio Grande do Sul, Brazil. J Coast Res 35:492–501

    Google Scholar 

  • Moraes LE, Paes E, Garcia A, Moller JRO, Vieira J (2012) Delayed response of fish abundance to environmental changes: a novel multivariate time-lag approach. Mar Ecol Prog Ser 456:159–168

    Article  Google Scholar 

  • Moresco A, Bemvenuti MA (2006) Biologia reprodutiva do peixe-rei Odontesthes argentinensis (Valenciennes) (Atherinopsidae) da região marinha costeira do sul do Brasil. Revista Brasileira de Zoologia 23:1168–1174

    Article  Google Scholar 

  • Odebrecht C, Abreu PC, Fujita CCY, Bergesch M (2003) The impact of mud deposition on the long term variability of the surf-zone diatom Asterionellopsis glacialis (Castracane) round. J Coastal Res 35:493–498

    Google Scholar 

  • Odebrecht C, Abreu PC, Bemvenuti CE, Coppertino M, Muelbert JH, Vieira JP, Seeliger U (2010a) Coastal lagoons: critical habitats of environmental change. CRC Press, Boca Raton

    Google Scholar 

  • Odebrecht C, Bergesch M, Rorig LR, Abreu PC (2010b) Phytoplankton interannual variability at Cassino Beach, Southern Brazil (1992–2007), with emphasis on the surf zone diatom Asterionellopsis glacialis. Estuar Coasts 33:570–583

    Article  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Rodrigues FL, Vieira JP (2012) Surf zone fish abundance and diversity at two sandy beaches separated by long rocky jetties. J Mar Biol Assoc U. K. 93:867–875

    Article  Google Scholar 

  • Romesburg HC (1984) Cluster analysis for researchers. Lifetime Learning Publications, California

    Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology. Academic Press, San Diego

    Google Scholar 

  • Santana FMS, Severi W (2009) Composition and structure of fish assemblage of the surf zone at Jaguaribe beach, Itamaracá (PE), Brazil. Bioikos 23:3–17

    Google Scholar 

  • Schoeman DS, Richardson AJ (2002) Investigating biotic and abiotic factors affecting the recruitment of an intertidal clam on an exposed sandy beach using a generalized additive model. J Exp Mar Biol Ecol 276:67–81

    Article  Google Scholar 

  • Silva JTO, Aguiar MCP, Lopes PRD (2008) Ictiofauna das praias de Cabuçu e Berlinque: uma contribuição ao conhecimento das comunidades de peixes na Baía de Todos os Santos, Bahia, Brasil. Biotemas 21:105–115

    Google Scholar 

  • Silvy NJ (2012) The wildlife techniques manual: volume 1: research, volume 2: management. Johns Hopkins University Press, Maryland

    Google Scholar 

  • Spiegehalter DJ, Best NJ, Carlin BP, Van der Linde A (2002) Bayesian measure of model complexity and fit. J R Stat Soc B 64:583–639

    Article  Google Scholar 

  • Strydom NA, d’Hotman BD (2005) Estuary-dependence of larval fishes in a non-estuary associated South African surf zone: evidence for continuity of surf assemblages. Estuar Coast Shelf Sci 63:101–108

    Article  Google Scholar 

  • Taylor DA, Nichols RS, Able KW (2007) Habitat selection and quality for multiple cohorts of young-of-the-year bluefish (Pomatomus saltatrix): comparisons between estuarine and ocean beaches in southern New Jersey. Estuar Coast Shelf Sci 73:667–679

    Article  Google Scholar 

  • Vasconcellos RM, Santos JMS, Silva MA, Araujo FG (2007) Efeito do grau de exposição às ondas sobre a comunidade de peixes juvenis em praias arenosas do Município do Rio de Janeiro, Brasil. Biota Neotropica 7:93–100

    Article  Google Scholar 

  • Vaz AC, Möller OO, Almeida TL (2006) Análise Quantitativa da Descarga dos Rios Afluentes da Lagoa dos Patos. Atlântica 28:13–23

    Google Scholar 

  • Venables WN, Dichmont CM (2004) GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res 70:319–337

    Article  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal Gradients of Biodiversity: pattern, Processes, Scale and Synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  • Wood SN (2006a) On confidence intervals for Generalized additive models based on Penalized regression splines. Aust N. Z. J Stat 48:445–464

    Article  Google Scholar 

  • Wood SN (2006b) Generalized additive models: an introduction with r. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This work was developed as part of the Master of Science dissertation by the first author working under the guidance of the second and with a scholarship provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). While any errors that may be present are our own, we would like to thank three excellent reviewers along with Luciano Dalla Rosa and Henrique N. Cabral for their helpful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Braga Martins.

Additional information

Handling Editor: Thomas Mehner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.C.B., Kinas, P.G., Marangoni, J.C. et al. Medium- and long-term temporal trends in the fish assemblage inhabiting a surf zone, analyzed by Bayesian generalized additive models. Aquat Ecol 49, 57–69 (2015). https://doi.org/10.1007/s10452-015-9504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-015-9504-9

Keywords

Navigation