Aquatic Ecology

, Volume 48, Issue 3, pp 259–266 | Cite as

Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis

  • Pamela Palacios-Fuentes
  • Mauricio F. Landaeta
  • Nicole Jahnsen-Guzmán
  • Guido Plaza
  • F. Patricio Ojeda
Article

Abstract

The subtidal rocky reefs are home to a diverse range of marine animals, including small cryptic fishes, characterised by a bipartite life cycle, with benthic adults and pelagic larval stage that lasts from several days to several months. Using the otolith microstructure analysis, this study determines the hatching and larval growth patterns of the abundant triplefin Helcogrammoides chilensis (Pisces: Tripterygiidae). Fish larvae were collected during September–October 2010 and between July 2012 and April 2013 in nearshore waters (<500 m) of central Chile. Nearshore time series of ichthyoplankton samples showed that large abundance of this species occurs during early austral spring and autumn seasons. Body lengths ranged from 3.11 to 16.57 mm (1–57 days old). Sagittal microincrement analyses estimate that during the main reproductive season, larval growth rates are slow, varying between 0.145 and 0.156 mm day−1 at a weekly scale. Back-calculated hatch days and circular statistics indicate a major hatch pulse occurring near full moon of the lunar cycle. These results suggest that reproduction occurs coupled with the upwelling season, which reduces the probability of starvation, and hatching occurs during spring tides (full moon), which increases larval dispersion and population connectivity.

Keywords

Otolith Lunar cycle Hatching pattern Tripterygiidae Helcogrammoides chilensis 

Notes

Acknowledgments

The authors want to thank to Jorge Contreras, María José Ochoa-Muñoz, Franco Salas-Berrios and Dr. Randy Finke for their field work on-board RV Ilan, and Dr. Lidia Mansur for her comments and support. Two anonymous reviewers improve with their comments a previous version of the ms. This research was supported by Comisión Nacional de Ciencia y Tecnología [FONDECYT Grant Number 1100424 to FPO, GP and MFL].

References

  1. Batschelet E (1981) Circular statistics in biology. Academic Press, New YorkGoogle Scholar
  2. Bergin TM (1991) A comparison of goodness-of-fit tests for analysis of nest orientation in western kingbirds (Tyrannus verticalis). Condor 93:164–171CrossRefGoogle Scholar
  3. Cancino C, Farías K, Lampas S, González B, Cuevas V (2010) Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Rev Biol Mar Oceanogr 45:671–682. doi:10.4067/S0718-19572010000400011 CrossRefGoogle Scholar
  4. Castillo G, Aguilera E, Herrera G, Bernal PA, Butler JL, Chong J, González H, Oyarzún C, Veloso C (1985) Larval Growth rates of the pacific sardine Sardinops sagax off central Chile, determined by daily ring counts in otoliths. Biol Pesq 14:3–10Google Scholar
  5. Christy JH (2003) Reproductive timing and larval dispersal of intertidal crabs: the predator avoidance hypothesis. Rev Chil Hist Nat 76:177–185. doi:10.4067/50716-078X2003000200005 CrossRefGoogle Scholar
  6. Ciechomski JD (1975) Características y distribución de postlarvas del acorazado, Agonopsis chiloensis (Jenyns, 1842) Jordan y Evermann, 1898 y de Tripterygion cunninghami Smitt, 1898 en aguas del Atlántico frente a la Argentina (Pisces). Physis A 84:309–317Google Scholar
  7. deBruyn AMH, Meeuwig JJ (2001) Detecting lunar cycles in marine ecology: periodic regression versus categorical ANOVA. Mar Ecol Prog Ser 214:307–310. doi:10.3354/meps214307 Google Scholar
  8. Gagliano M, McCormick MI (2007) Compensating in the wild: is flexible growth the key to early juvenile survival? Oikos 116:111–120. doi:10.1111/j.2006.0030-1299.15418.x CrossRefGoogle Scholar
  9. Grant RA, Chadwick EA, Halliday T (2009) The lunar cycle: a cue for amphibian reproductive phenology? Anim Behav 78:349–357. doi:10.1016/j.anbehav.2009.05.007 CrossRefGoogle Scholar
  10. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  11. Hernández EH, Castro LR (2000) Larval growth of the anchoveta Engraulis ringens during the winter spawning season off central Chile. Fish Bull 98:704–710Google Scholar
  12. Hernández-Miranda E, Palma AT, Ojeda FP (2003) Larval fish assemblages in nearshore coastal waters off central Chile: temporal and spatial patterns. Estuar Coast Shelf Sci 56:1075–1092. doi:10.1016/S0272-7714(02)00308-6 CrossRefGoogle Scholar
  13. Jones GP (1988) Ecology of rocky reef fish of north-eastern New Zealand: a review. N Z J Mar Freshw Res 22:445–462. doi:10.1080/00288330.1988.9516315 CrossRefGoogle Scholar
  14. Kohn YY, Clements KD (2011) Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environ Biol Fish 91:275–286. doi:10.1007/s10641-011-9777-3 CrossRefGoogle Scholar
  15. Landaeta MF, Castro LR (2006) Larval distribution and growth of the rockfish, Sebastes capensis (Sebastidae, Pisces), in the fjords of southern Chile. ICES J Mar Sci 63:714–724. doi:10.1016/j.icesjms.2006.01.002 CrossRefGoogle Scholar
  16. Landaeta MF, Schrebler K, Bustos CA, Letelier J, Balbontín F (2009) Temporal fluctuations of nearshore ichthyoplankton off Valparaíso, central Chile, during the ENSO cycle 1997–2000. Rev Biol Mar Oceanogr 44:571–582. doi:10.4067/s0718-19572009000300005 CrossRefGoogle Scholar
  17. Landaeta MF, Inostroza PA, Ramírez A, Soto-Mendoza S, Castro LR (2010) Distribution patterns, larval growth and hatch dates of early stages of the mote sculpin Normanichthys crockeri (Scorpaeniformes, Normanichthydae) in the upwelling ecosystem off central Chile. Rev Biol Mar Oceanogr 45:575–588. doi:10.4067/s0718-19572010000400006 CrossRefGoogle Scholar
  18. Landaeta MF, López G, Suárez-Donoso N, Bustos CA, Balbontín F (2012) Larval fish distribution, growth and feeding in Patagonian fjords: potential effects of freshwater discharge. Environ Biol Fish 93:73–87. doi:10.1007/s10641-011-9891-2 CrossRefGoogle Scholar
  19. Leatherland JF, Farbridge KJ, Boujard T (1992) Lunar and semi-lunar rhythms in fishes. In: Ali MA (ed) Rhythms in fishes. Plenum Press, New York, pp 83–107CrossRefGoogle Scholar
  20. Mansur L, Catalán D, Plaza G, Landaeta MF, Ojeda FP (2013) Validations of the daily periodicity of increment deposition of eight species of intertidal rocky fishes in the Southeastern Pacific Ocean. Rev Biol Mar Oceanogr 48:629–633CrossRefGoogle Scholar
  21. McDermontt CJ, Shima JS (2006) Ontogenetic shift in microhabitat preference of a temperate reef fish Forsterygion lapillum: implications for population limitation. Mar Ecol Prog Ser 320:259–266. doi:10.3354/meps320259 CrossRefGoogle Scholar
  22. Mizushima N, Nakashima Y, Kuwamura T (2000) Semilunar spawning cycle of the humbug damselfish Dascyllus aruanus. J Ethol 18:105–108. doi:10.1007/s101640070008 CrossRefGoogle Scholar
  23. Munday PL, Hernaman V, Dixon DL, Thorrold SR (2011) Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641. doi:10.5194/bg-8-1631-2011 CrossRefGoogle Scholar
  24. Narváez DA, Poulin E, Leiva G, Hernández E, Castilla JC, Navarrete SA (2004) Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont Shelf Res 24:279–292. doi:10.1016/j.csr.2003.09.008 CrossRefGoogle Scholar
  25. Nelson JS (2006) Fishes of the world. Wiley, New JerseyGoogle Scholar
  26. Palma A, Ojeda FP (2002) Abundance, distribution, and feeding patterns of temperate reef fish in subtidal environment of the Chilean coast: the importance of understory algal turf. Rev Chil Hist Nat 75:189–200. doi:10.4067/s0716-670X2002000100018 CrossRefGoogle Scholar
  27. Pérez R (1979) Desarrollo postembrionario de Tripterygion chilensis Cancino 1955, en la Bahía de Valparaíso (Tripterygiidae: Perciformes). Rev Biol Mar 16:319–329Google Scholar
  28. Pérez-Matus A, Pledger S, Díaz FJ, Ferry LA, Vásquez JA (2012) Plasticity in feeding selectivity and trophic structure of kelp forest associated fishes from northern Chile. Rev Chil Hist Nat 85:29–48. doi:10.4067/s0716-078X2012000100003 CrossRefGoogle Scholar
  29. Plaza G, Landaeta MF, Espinoza CV, Ojeda FP (2013) Daily growth patterns of six species of young-of-the-year of Chilean intertidal fishes. J Mar Biol Ass UK 93:389–395. doi:10.1017/s0025315412000859 CrossRefGoogle Scholar
  30. Pulgar J, Poblete E, Alvarez M, Morales JP, Aranda B, Aldana M, Pulgar VM (2013) Can upwelling signals be detected in intertidal fishes of different trophic levels? J Fish Biol 83:1407–1415. doi:10.1111/jfb.12220 PubMedCrossRefGoogle Scholar
  31. Robertson DR, Petersen CW, Brawn JD (1990) Lunar reproductive cycles of benthic-brooding reef fish: reflections of larval biology or adult biology? Ecol Monogr 60:311–329. doi:10.2307/193060 CrossRefGoogle Scholar
  32. Ruck JG (1973) Development of Tripterygion capito and T. robustum (Pisces: Tripterygiidae). Zool Publ Vic Univ Wellingt 63:1–10Google Scholar
  33. Ruck JG (1980) Early development of Forsterygion varium, Gilloblennius decemdigitatus, and G. tripennis (Pisces: Tripterygiidae). N Z J Mar Freshw Res 14:313–326. doi:10.1080/00288330.1980.9515874 CrossRefGoogle Scholar
  34. Russell GS, Levitin DJ (1995) An expanded table of probability values for Rao’s spacing test. Commun Statist Simula 24:879–888. doi:10.1080/03610919508813281 CrossRefGoogle Scholar
  35. Santos JN, Silva MA, Vasconcellos RM, Araújo FG (2005) Efeito do tempo de conservacao dos espécimes sobre a qualidade dos microincrementos em otolitos sagittae de Anchoa tricolor (Agassiz) (Clupeiformes, Engraulidae). Rev Bras Zool 22:949–952CrossRefGoogle Scholar
  36. Smith AC, Shima JS (2011) Variations in the effect of larval history on juvenile performance of a temperate reef fish. Austral Ecol 36:830–838. doi:10.1111/j.1442-9993.2010.02223.x CrossRefGoogle Scholar
  37. Sponaugle S (2010) Otolith microstructure reveals ecological and oceanographic processes important to ecosystem-based management. Environ Biol Fishes 89:221–238. doi:10.1007/s10641-010-9676-z CrossRefGoogle Scholar
  38. Sponaugle S, Pinkard D (2004) Lunar cyclic population replenishment of a coral reef fish: shifting patterns following oceanic events. Mar Ecol Prog Ser 267:267–280. doi:10.3354/meps267267 CrossRefGoogle Scholar
  39. Takemura A, Rahman MS, Park YJ (2010) External and internal controls of lunar-related reproductive rhythms in fishes. J Fish Biol 76:7–26. doi:10.1111/j.1095-8649.2009.02481.x PubMedCrossRefGoogle Scholar
  40. Williams JT, Springer VG (2001) Review of the South American Antarctic triplefin fish genus Helcogrammoides (Perciformes: Tripterygiidae). Rev Biol Trop 49(Suppl. 1):117–123PubMedGoogle Scholar
  41. Zar JH (1999) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar
  42. Zenteno JI, Bustos CA, Landaeta MF (2014) Larval growth, condition and fluctuating asymmetry in the otoliths of a mesopelagic fish in an area influenced by a large Patagonian glacier. Mar Biol Res 10:504–514. doi:10.1080/17451000.2013.831176 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pamela Palacios-Fuentes
    • 1
  • Mauricio F. Landaeta
    • 1
  • Nicole Jahnsen-Guzmán
    • 2
  • Guido Plaza
    • 3
  • F. Patricio Ojeda
    • 4
  1. 1.Laboratorio de Ictioplancton (LABITI), Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  2. 2.Facultad de Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
  3. 3.Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaisoChile
  4. 4.Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations