Effect of water currents on organic matter release by two scleractinian corals

Abstract

Organic matter release by scleractinian corals fulfils an important ecological role as energy carrier and particle trap in reef ecosystems, but the hypothetically stimulating impact of water currents, an essential and ubiquitous environmental factor in coral reefs, on this process has not been investigated yet. This study therefore quantifies organic matter release by two species of scleractinian corals subjected to ambient water current velocities ranging from 4 to 16 cm s−1 using closed-system flow-through chambers. Findings revealed that particulate organic matter (POM) concentration was significantly increased in the flow-through chambers in all investigated coral species compared to still water conditions, while no effect on dissolved organic carbon (DOC) concentration could be observed. These results suggest that POM release by corals may be controlled by hydro-mechanical impacts, while DOC fluxes are rather influenced by the physiological condition of the corals. Hence, this study indicates that previous POM release quantification results are conservative estimates and may have underestimated in situ POM release through corals in reef environments. The contribution of coral-derived POM to biogeochemical cycles in reef ecosystems, therefore, may be more pronounced than already assumed.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Atkinson MJ, Kotler E, Newton P (1994) Effects of water velocity on respiration, calcification and ammonium uptake in a Porites compressa community. Pac Sci 48:296–303

    Google Scholar 

  2. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    PubMed  Article  CAS  Google Scholar 

  3. Benson A, Muscatine L (1974) Wax in coral mucus—energy transfer from corals to reef fishes. Limnol Oceanogr 19:810–814

    Article  Google Scholar 

  4. Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  5. Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88–93

    Article  Google Scholar 

  6. Coffroth MA (1984) Ingestion and incorporation of coral mucus aggregates by a gorgonian soft coral. Mar Ecol Prog Ser 17:193–199

    Article  Google Scholar 

  7. Cole JJ, Likens GE, Strayer DL (1982) Photosynthetically produced dissolved organic-carbon—an important carbon source for planktonic bacteria. Limnol Oceanogr 27:1080–1090

    Article  CAS  Google Scholar 

  8. Crossland C (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  9. Crossland C, Barnes D, Borowitzka M (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–90

    Article  CAS  Google Scholar 

  10. Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  11. De Goeij JM, Van Duyl FC (2007) Coral cavities are sinks for dissolved organic carbon (DOC). Limnol Oceanogr 52:2608–2617

    Article  Google Scholar 

  12. Ferrier-Pages C, Gattuso JP, Cauwet G, Jaubert J, Allemand D (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274

    Article  CAS  Google Scholar 

  13. Finelli CM, Helmuth BST, Pentcheff ND, Wethey DS (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57

    Article  Google Scholar 

  14. Fogg GE (1983) The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar 26:3–14

    Article  CAS  Google Scholar 

  15. Haas AF, Jantzen C, Naumann MS, Iglesias-Prieto R, Wild C (2010a) Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability. Mar Ecol Prog Ser 409:27–39

    Article  CAS  Google Scholar 

  16. Haas AF, Naumann MS, Struck U, Mayr C, el-Zibdah M, Wild C (2010b) Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Biol Ecol 389:53–60

    Article  CAS  Google Scholar 

  17. Herndl GJ, Velimirov B (1986) Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar Biol 90:363–369

    Article  Google Scholar 

  18. Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494:231–236

    Article  CAS  Google Scholar 

  19. Huettel M, Wild C, Gonelli S (2006) The mucus trap in coral reefs: formation and temporal evolution of aggregates caused by coral mucus. Mar Ecol Prog Ser 307:69–84

    Article  Google Scholar 

  20. Kappner I, Al-Moghrabi SM, Richter C (2000) Mucus-net feeding by the vermetid gastropod Dendropoma maxima in coral reefs. Mar Ecol Prog Ser 204:309–313

    Article  Google Scholar 

  21. Lesser MP, Weiss VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery in the reef coral Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178:153–179

    Article  CAS  Google Scholar 

  22. Manasrah RS, Al-Horani F, Rasheed MY, Al-Rousan SA, Khalaf MA (2006) Patterns of summer vertical and horizontal currents in coastal waters of the northern Gulf of Aqaba, Red Sea. Estuar Coast Shelf Sci 69:567–579

    Article  Google Scholar 

  23. Mayer FW, Wild C (2010) Coral mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. Mar Freshw Res 61:1006–1014

    Article  CAS  Google Scholar 

  24. Meikle P, Richards G, Yellowlees D (1988) Structural investigations on the mucus from 6 species of coral. Mar Biol 99:187–193

    Article  CAS  Google Scholar 

  25. Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39:37–55

    Article  Google Scholar 

  26. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25:1–29

    Google Scholar 

  27. Nakajima R, Yoshida T, Azman BAR, Zaleha K, Othman BHR (2009) In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat Ecol 43:815–823

    Article  CAS  Google Scholar 

  28. Nakajima R, Yoshida T, Fujita K, Nakayama A, Fuchinoue Y, Othman BHR, Toda T (2010) Release of particulate and dissolved organic carbon by the scleractinian coral Acropora formosa. Bull Mar Sci 86:861–870

    Article  Google Scholar 

  29. Naumann MS, Niggl W, Laforsch C, Glaser C, Wild C (2009a) Coral surface area quantification—evaluation of established methods by comparison with computer tomography. Coral Reefs 28:109–117

    Article  Google Scholar 

  30. Naumann MS, Richter C, el-Zibdah M, Wild C (2009b) Coral mucus as an efficient trap for picoplanktonic cyanobacteria—implications for pelagic-benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–76

    Article  Google Scholar 

  31. Naumann MS, Haas AF, Struck U, Mayr C, el-Zibdah M, Wild C (2010) Organic matter release by the dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659

    Article  Google Scholar 

  32. Niggl W, Glas M, Laforsch C, Mayr C, Wild C (2009) First evidence of coral bleaching stimulating organic matter release by reef corals 11th Int Coral Reef Symp Ft. Lauderdale, USA, pp 905–910

  33. Niggl W, Naumann MS, Struck U, Manasrah M, Wild C (2010) Organic matter release by the benthic upside-down jellyfish Cassiopea sp. fuels pelagic food webs in coral reefs. J Exp Mar Biol Ecol 384:99–106

    Article  Google Scholar 

  34. Reidenbach MA, Koseff JR, Monismith SG, Steinbuck JV, Genin A (2006) The effects of waves and morphology on mass transfer within branched reef corals. Limnol Oceanogr 51:1134–1141

    Article  Google Scholar 

  35. Richman S, Loya Y, Slobodkin L (1975) Rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol Oceanogr 20:918–923

    Article  Google Scholar 

  36. Schutter M, Crocker J, Paijmans A, Janse M, Osinga R, Verreth AJ, Wijffels RH (2010) The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 29:737–748

    Article  Google Scholar 

  37. Sebens KP, Helmuth BST, Carrington E, Agius B (2003) Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize. Coral Reefs 22:35–47

    Google Scholar 

  38. Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2008) Production of dissolved and particulate organic matter by the reef-building corals Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245

    Google Scholar 

  39. Tanaka Y, Miyajima T, Umezawa Y, Hayashibara T, Ogawa H, Koike I (2009) Net release of dissolved organic matter by the scleractinian coral Acropora pulchra. J Exp Mar Biol Ecol 377:101–106

    Article  CAS  Google Scholar 

  40. Tanaka Y, Ogawa H, Miyajima T (2010) Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata. Coral Reefs 29:675–682

    Article  Google Scholar 

  41. van Duyl FC, Moodley L, Nieuwland G, van Ijzerloo L, van Soest RWM, Houtekamer M, Meesters EH, Middelburg JJ (2011) Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints. Mar Biol 158:1653–1666

    Article  CAS  Google Scholar 

  42. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed M, Jørgensen BB (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    PubMed  Article  CAS  Google Scholar 

  43. Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M (2004b) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Article  Google Scholar 

  44. Wild C, Rasheed M, Jantzen C, Cook P, Struck U, Huettel M, Boetius A (2005) Benthic metabolism and degradation of natural particulate organic matter in silicate and carbonate sands of the Northern Red Sea. Mar Ecol Prog Ser 298:69–78

    Article  CAS  Google Scholar 

  45. Wild C, Mayr C, Wehrmann L, Schöttner S, Naumann M, Hoffmann F, Rapp HT (2008) Organic matter release by cold water corals and its implication for fauna-microbe interaction. Mar Ecol Prog Ser 372:67–75

    Article  CAS  Google Scholar 

  46. Wild C, Naumann MS, Niggl W, Haas AF (2010a) Carbohydrate composition of mucus released by scleractinian warm and cold water reef corals. Aquat Biol 10:41–45

    Article  Google Scholar 

  47. Wild C, Niggl W, Naumann MS, Haas AF (2010b) Organic matter release by Red Sea coral reef organisms—potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71

    Article  CAS  Google Scholar 

  48. Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ronald Osinga, Miriam Schutter, Mechthild Kredler and Markus Oehlerich for their support. Holger H. Saar is acknowledged for his assistance during experiments. Editor Piet Spaak and two anonymous reviewers are kindly acknowledged for helping to improve this manuscript. This study was funded by grant Wi 2677/2-1 and Wi 2677/6-1 of the German Research Foundation (DFG) to C. Wild and a PhD stipend of University of Bavaria/Bavarian Elite Advancement to W. Niggl.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Wild.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wild, C., Laforsch, C., Mayr, C. et al. Effect of water currents on organic matter release by two scleractinian corals. Aquat Ecol 46, 335–341 (2012). https://doi.org/10.1007/s10452-012-9404-1

Download citation

Keywords

  • Coral
  • Organic matter release
  • Water current
  • Flow chamber