Aquatic Ecology

, Volume 44, Issue 1, pp 255–267 | Cite as

Prey selection by larvae of Prochilodus lineatus (Pisces: Curimatidae): indigenous zooplankton versus veligers of the introduced bivalve Limnoperna fortunei (Bivalvia: Mitilidae)

  • Esteban M. Paolucci
  • Daniel H. Cataldo
  • Demetrio Boltovskoy


We studied experimentally the feeding selectivity of larvae of Prochilodus lineatus (Pisces), with particular emphasis on the role of veligers of the exotic bivalve Limnoperna fortunei. Three concentrations of veligers were offered to three developmental stages of P. lineatus. Veliger concentrations were: (1) higher than in the field (“enriched”, 0.09 ind. ml−1), (2) unmodified from field conditions (“normal”, 0.06 ind. ml−1), and (3) lower than in the field (“low”, 0.02 ind. ml−1). Fish developmental stages were protolarvae (approx. 10 days old), mesolarvae (17 days), and metalarvae (25 days). Proportions (in terms of numbers and biomass) and selectivity values were calculated for each prey item evaluated: veligers, small cladocerans + nauplii, medium-sized cladocerans, copepodits, and large cladocerans + copepods. Protolarvae and mesolarvae consumed veligers almost exclusively (88–90%, both in numbers and in biomass) when offered prey enriched in veligers, whereas for metalarvae veligers represented only 16.0% of the food consumed. At lower veliger concentrations, only protolarvae preferred Limnoperna veligers, whereas older fishes switched gradually to crustacean plankton. We conclude that veligers are preferred by the early fish developmental stages, and we speculate that this may be because their slower swimming makes them easier to capture than planktonic crustaceans. However, as fish larvae grow larger, veligers become too small a prey for their energetic needs, and they switch to larger items like cladocerans and copepods. We anticipate that this new and abundant food resource has an important impact on the survival and growth of P. lineatus.


Prey selection Limnoperna fortunei veligers Exotic bivalve Larval fish Prochilodus lineatus 



This work was supported by grants ANPCyT PICT 2004 25275, UBA X096, and UBA X020. We are grateful to the three anonymous reviewers whose recommendations greatly helped to improve the original version of the manuscript. Dr. Erik Thuesen and Mr. Bret Parker kindly revised the manuscript for English spelling, grammar, and usage.


  1. Abrams PA (2000) The evolution of predator–prey interactions: theory and evidence. Annu Rev Ecol Syst 31:79–105CrossRefGoogle Scholar
  2. Akopian M, Garnier J, Testard P, Ficht A (2001) Estimating the benthic population of Dreissena polymorpha and its impact in the lower Seine River, France. Estuaries 24:1003–1014CrossRefGoogle Scholar
  3. Barnard C, Martineau C, Frenette JJ, Dodson JJ, Vincent WF (2006) Trophic position of zebra mussel veligers and their use of dissolved organic carbon. Limnol Oceanogr 51:1473–1484CrossRefGoogle Scholar
  4. Bartsch MR, Bartsch LA, Gutreuter S (2005) Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river. J N Am Benthol Soc 24:168–177CrossRefGoogle Scholar
  5. Boltovskoy D, Cataldo D (1999) Population dynamics of Limnoperna fortunei, an invasive fouling mollusc, in the Lower Paraná River (Argentina). Biofouling 14:255–263CrossRefGoogle Scholar
  6. Boltovskoy D, Correa N, Cataldo D, Sylvester F (2006) Dispersion and impact of invasive freshwater bivalves: Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963CrossRefGoogle Scholar
  7. Boltovskoy D, Sylvester F, Otaegui A, Leites V, Cataldo D (2009) Environmental modulation of reproductive activity of the invasive mussel Limnoperna fortunei: implications for antifouling strategies. Austral Ecol. doi:  10.1111/j.1442-9993.2009.01974.x
  8. Bonetto AA, Martinez de Ferrato A (1966) Introducción al estudio del zooplankton en las cuencas isleñas del Paraná Medio. Physis 26:385–396Google Scholar
  9. Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Nor J Zool 24:419–456Google Scholar
  10. Cantanhêde G, Hahn NS, Gubiani EA, Fugi R (2008) Invasive molluscs in the diet of Pterodoras granulosus (Valenciennes, 1821) (Pisces, Doradidae) in the Upper Paraná River floodplain, Brazil. Ecol Freshw Fish 17:47–53CrossRefGoogle Scholar
  11. Cataldo D, Boltovskoy D (2000) Yearly reproductive activity of Limnoperna fortunei (Bivalvia) as inferred from the occurrence of its larvae in the plankton of the lower Paraná river and the Río de la Plata estuary (Argentina). Aquat Ecol 34:307–317CrossRefGoogle Scholar
  12. Clarke LR, Letizia PS, Bennett DH (2004) Autumn-to-spring energetic and diet changes among Kokanee from North Idaho Lakes with and without Mysis relicta. N Am J Fish Manag 24:597–608CrossRefGoogle Scholar
  13. Cooper SD, Goldman CR (1980) Opossum shrimp (Mysis relicta) predation on zooplankton. Can J Fish Aquat Sci 37:909–919Google Scholar
  14. Coulas RA, MacIsaac HJ, Dunlop W (1998) Selective predation on an introduced zooplankton (Bythotrephes cederstroemi) by Lake Herring (Coregonus artedii) in Harp Lake, Ontario. Freshw Biol 40:343–355CrossRefGoogle Scholar
  15. Dumitru C, Sprules WG, Yan ND (2001) Impact of Bythotrephes longimanus on zooplankton assemblages of Harp Lake, Canada: an assessment based on predator consumption and prey production. Freshw Biol 46:241–251CrossRefGoogle Scholar
  16. Dumont HJ, Van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97CrossRefGoogle Scholar
  17. Feyrer F, Herbold B, Matern C, Moyle PB (2003) Dietary shifts in a stressed fish assemblage: consequences of a bivalve invasion in the San Francisco Estuary. Environ Biol Fish 67:277–288CrossRefGoogle Scholar
  18. Fortier L, Leggett WC (1985) A drift study of larval fish survival. Mar Ecol Prog Ser 25:245–257CrossRefGoogle Scholar
  19. French JRP, Bur MT (1996) The effect of Zebra Mussel consumption on growth of freshwater drum in Lake Erie. J Freshw Ecol 11:283–289Google Scholar
  20. Fryxell JM, Lundberg P (1998) Individual behaviour and community dynamics. Chapman and Hall, LondonGoogle Scholar
  21. Gonzalez EJ, Matsumura-Tundisi T, Tundisi JG (2008) Size and dry weight of main zooplankton species in Bariri reservoir (SP, Brazil). Braz J Biol 68:69–75CrossRefPubMedGoogle Scholar
  22. Karatayev AY, Burlakova LE, Padilla DK (2002) Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Monoraphiae Biologicae Series. Kluwer, Dordrecht, pp 433–446Google Scholar
  23. Karatayev AY, Boltovskoy D, Padilla DK, Burlakova LE (2007) The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. J Shellfish Res 26:205–213CrossRefGoogle Scholar
  24. Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167CrossRefGoogle Scholar
  25. Lehtiniemi M, Hakala T, Saesmaa S, Viitasalo M (2007) Prey selection by the larvae of three species of littoral fishes on natural zooplankton assemblages. Aquat Ecol 41:85–94CrossRefGoogle Scholar
  26. Leiby MA (1984) Life history and ecology of pelagic fish eggs and larvae. In: Steidinger KA, Walker LM (eds) Marine plankton life cycle strategies. CRC Press, Boca Raton, pp 121–140Google Scholar
  27. MacIssac HJ, Grigorovich IA, Hoyle JA, Yan ND, Panov VE (1999) Invasion of Lake Ontario by the Ponto- Caspian predatory cladoceran Cercopagis pengoi. Can J Fish Aquat Sci 56:1–5CrossRefGoogle Scholar
  28. Michaletz PH, Unkenholz DG, Stone CC (1987) Prey size selectivity and food partitioning among zooplanktivorous age-0 fishes in Lake Francis Case, South Dakota. Am Midl Nat 117:126–138CrossRefGoogle Scholar
  29. Mills EL, O’Gorman R, DeGisi J, Heberger RF, House RA (1992) Food of the alewife (Alosa pseudoharengus) in Lake Ontario before and after the establishment of Bythotrephes cederstroemi. Can J Fish Aquat Sci 49:2009–2019CrossRefGoogle Scholar
  30. Mills EL, O’Gorman R, Roseman EF, Adams C, Owens RW (1995) Planktivory by alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) on microcrustacean zooplankton and dreissenid (Bivalvia: Dreissenidae) veligers in southern Lake Ontario. Can J Fish Aquat Sci 52:925–935CrossRefGoogle Scholar
  31. Nagelkerke LAJ, Sibbing FA (1996) Reproductive segregation among the Barbus intermedius complex of Lake Tana, Ethiopia. An example of intralacustrine speciation? J Fish Biol 49:1244–1266Google Scholar
  32. Nichols SJ (1996) Variations in the reproductive cycle of Dreissena polymorpha in Europe, Russia, and North America. Am Zool 36:311–325Google Scholar
  33. Paolucci EM, Cataldo DH, Fuentes CM, Boltovskoy D (2007) Larvae of the invasive species Limnoperna fortunei (Bivalvia) in the diet of fish larvae in the Paraná River, Argentina. Hydrobiologia 589:219–233CrossRefGoogle Scholar
  34. Pearre S (1982) Estimating prey preference by predators: uses of various indices and a proposal of another based on χ 2. Can J Fish Aquat Sci 39:914–923Google Scholar
  35. Pepin P, Penney RW (1997) Patterns of prey size and taxonomic composition in larval fish: are there general size dependent models? J Fish Biol 51:84–100CrossRefGoogle Scholar
  36. Poddubnyi AG (1966) On the adaptive response of roach populations to changes in environmental conditions, in Biologiya ryb volzhskikh vodokhranilishch (biology of fish in reservoirs on the Volga). Nauka, Moscow, pp 131–138Google Scholar
  37. Pothoven SA, Madenjian CP (2008) Changes in consumption by alewives and lake whitefish after Dreissenid mussel invasions in Lakes Michigan and Huron. N Am J Fish Manag 28:308–320CrossRefGoogle Scholar
  38. Pryor VK, Epifanio CE (1993) Prey selection by larval weakfish (Cynoscion regalis): the effects of prey size, speed and abundance. Mar Biol 116:31–37CrossRefGoogle Scholar
  39. Quirós R, Cuch S (1989) The fisheries and limnology of the lower Plata basin. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Can Spec Publ Fish Aquat Sci 106:429–443Google Scholar
  40. Rossi LM (1992) Evolución morfológica del aparato digestivo de postlarvas y prejuveniles de Prochilodus lineatus (Val, 1847) (Pisces, Curimatidae) y su relación con la dieta. Rev Hydrobiol Trop 25:159–167Google Scholar
  41. Rossi LM (2001) Ontogeny diet shifts in a neotropical catfish, Sorubim lima (Schneider) from the River Paraná System. Fish Manag Ecol 8:141–152CrossRefGoogle Scholar
  42. Rossi L, Cordiviola E, Parma MJ (2007) Fishes. In: Iriondo MH, Paggi JC, Parma MJ (eds) The Middle Paraná River: limnology of a subtropical wetland. Springer-Verlag, Berlin, pp 305–325Google Scholar
  43. Schoener TW (1971) Theory of feeding strategies. Ann Rev Ecol Syst 2:369–404CrossRefGoogle Scholar
  44. Sifa Li, Mathias JA (1987) The critical period of high mortality of larvae fish. A discussion based on current research. Chin J Oceanol Limnol 5:80–97CrossRefGoogle Scholar
  45. Snyder DE (1983) Fish eggs and larvae. In: Nielsen L, Johnson D (eds) Fisheries techniques. American Fisheries Society, Bethesda, pp 165–197Google Scholar
  46. Sprung M (1993) The other life: an account of present knowledge of the larval phase of Dreissena polymorpha. In: Nalepa TF, Schloesser DW (eds) Zebra Mussels biology, impacts and control. Lewis Publishers, Boca Raton, pp 39–53Google Scholar
  47. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, New JerseyGoogle Scholar
  48. Stewart TW, Miner JG, Lowe RL (1998) An experimental analysis of crayfish (Orconectes rusticus) effects on a Dreissena-dominated benthic macroinvertebrate community in western Lake Erie. Can J Fish Aquat Sci 55:1043–1050CrossRefGoogle Scholar
  49. Strayer DL, Hattala KA, Kahnle AW (2004) Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Can J Fish Aquat Sci 61:924–941CrossRefGoogle Scholar
  50. Strecker AL, Arnott SE (2008) Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11:490–503CrossRefGoogle Scholar
  51. Sverlij SB, Espinach Ros A, Orti G (1993) Sinopsis de los datos biológicos y pesqueros del sábalo (Prochilodus lineatus (Valenciennes, 1847)). FAO Sinopsis sobre la Pesca 154, RomaGoogle Scholar
  52. Sylvester F, Boltovskoy D, Cataldo D (2007) The invasive bivalve Limnoperna fortunei enhances benthic invertebrate densities in South American Floodplain Rivers. Hydrobiologia 589:15–27CrossRefGoogle Scholar
  53. Vanderploeg A, Bowers JA, Chapeleski O, Soo HK (1982) Measuring in situ predation by Mysis relicta and observations on underdispersed microdistributions of zooplankton. Hydrobiologia 93:109–119CrossRefGoogle Scholar
  54. Werner EE (1974) The fish size, prey size, handling time relation in several sunfishes and some implications. J Fish Res Board Can 31:1531–1536Google Scholar
  55. Yan ND, Blukacz A, Sprules WG, Kindy PK, Hackett D, Girard RE, Clark BJ (2001) Changes in zooplankton and the phenology of the spiny water flea, Bythotrephes, following its invasion of Harp Lake, Ontario, Canada. J Fish Aquat Sci 58:2341–2350CrossRefGoogle Scholar
  56. Zar JH (1999) Biostatistical analysis. Prentice Hall International, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Esteban M. Paolucci
    • 1
    • 2
  • Daniel H. Cataldo
    • 1
    • 2
    • 3
  • Demetrio Boltovskoy
    • 1
    • 2
    • 3
  1. 1.Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’Buenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations