Skip to main content
Log in

Critical limits for acid neutralizing capacity of brown trout (Salmo trutta) in Norwegian lakes differing in organic carbon concentrations

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

A regional data set on water chemistry from 1995 was used to set critical values for the survival of brown trout in Norwegian lakes (n = 790) in relation to pH, inorganic Al and acid neutralizing capacity (ANC). ANC was estimated both traditionally (ANCtrad) and modified by treating one-third of the dissolved organic matter as part of the strong acid anions (ANCmod). The threshold value to avoid fish damage (ANClimit) was compared with that found in a similar study from 1986. Brown trout populations were categorized as unaffected, damaged or extinct on the basis of questionnaires. In 1995, threshold values to avoid fish damage on the basis of ANCtrad and ANCmod were 67 and 48 μeq l−1, respectively, compared with 20 and 8 μeq l−1, respectively, in 1986. The higher ANClimit found for the data from 1995 is probably caused by a lower pH and a higher inorganic Al concentration at a given ANC value in 1995 than in the 1980s. ANClimit was highly related to organic carbon concentrations in the study lakes, being estimated at 33, 73 and >100 μeq l−1 for three different TOC categories (<2 mg C l−1, 2–5 mg C l−1 and >5 mg C l−1). These differences in ANClimit are due to lower pH and higher concentrations of inorganic Al in humic lakes than in clear water lakes at the same level of ANC. It is suggested that the change in ANClimit for fish in acidified lakes is linked to increased concentrations of TOC in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson HC, Appelberg M, Wilander A (2001) Critical chemical values based on Swedish conditions. In: Sötvatten. Årsskrift før miljöövervakningen 2001. ISBN 91-620-5149-0, pp 24–27 (in Swedish with English summary)

  • Baker JP, Christensen SW (1991) Effects of acidification on biological communities in aquatic ecosystems. In: Charles DF (ed) Acid deposition and aquatic ecosystems. Springer-Verlag, New York, pp 83–106

    Google Scholar 

  • Baker JP, Schofield CL (1980) Aluminum toxicity to fish as related to acid precipitation and Adirondack surface water quality. In: Drabløs D, Tollan A (eds) Ecological impact of acid precipitation. Proceedings of an international conference, Sandefjord, Norway, March 11–14, 1980. SNSF project, NISK—1432 Ås, Norway, pp 292–293

  • Birchall JD, Exley C, Chappell JS, Phillips MJ (1989) Acute toxicity of aluminum to fish eliminated in silicon-rich acid waters. Nature 338:146–148

    Article  CAS  Google Scholar 

  • Driscoll CT, Baker JP, Bisogni JJ, Schofield CI (1980) Effect of aluminium speciation on fish in dilute acidified waters. Nature 284:161–164

    Article  CAS  Google Scholar 

  • Driscoll CT, Newton RM, Gubala PO, Baker JP, Christensen SW (1991) Adirondack Mountains. In: Charles DF (ed) Acidic deposition and aquatic ecosystems. Regional case studies. Springer-Verlag, New York, pp 133–202

    Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71

    Article  PubMed  CAS  Google Scholar 

  • Fölster J, Andrén C, Bishop K, Buffam I, Cory N, Goedkoop W, Holmgren K, Johnson R, Laudon H, Wilander A (2007) A novel environmental quality criterion for acidification in Swedish lakes—an application of studies on the relationship between biota and water chemistry. Water Air Soil Pollut (Focus) 7:331–338. doi:10.1007/s11267-006-9075-9

    Article  CAS  Google Scholar 

  • Gensemer RW, Playle RC (1999) The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Technol 29:315–350

    Article  CAS  Google Scholar 

  • Henriksen A, Lien L, Traaen TS, Sevaldrud IS, Brakke DF (1988) Lake acidification in Norway: present and predicted chemical status. Ambio 17:259–266

    CAS  Google Scholar 

  • Henriksen A, Skjelkvåle BL, Mannio J, Wilander A, Harriman R, Curtis C, Jensen JP, Fjeld E, Moiseenko T (1998) Northern European lake survey, 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. Ambio 27:80–91

    Google Scholar 

  • Hesthagen T, Rosseland BO, Berger HM, Larsen BM (1993) Fish community status in Norwegian lakes in relation to acidification: a comparison between interviews and actual catches by test-fishing. Nord J Freshw Res 68:34–41

    Google Scholar 

  • Hesthagen T, Sevaldrud IH, Berger HM (1999) Assessment of damage to fish populations in Norwegian lakes due to acidification. Ambio 28:112–117

    Google Scholar 

  • Hesthagen T, Skjelkvåle BL, Henriksen A, Østborg G (2000) The 1000 Lake Survey: changes in fish status between 1986 and 1995. NINA Oppdragsmelding 674:1–14 (in Norwegian with English abstract)

    Google Scholar 

  • Howells GD, Brown DJA, Sadler K (1983) Effects of acidity, calcium and aluminium on fish survival and productivity—a review. J Sci Food Agric 34:559–570

    Article  CAS  Google Scholar 

  • Keller W, Yan ND, Gunn JM, Heneberry J (2007) Recovery of acidified lakes: lessons from Sudbury, Ontario, Canada. Water Air Soil Pollut (Focus) 7:317–322

    Article  CAS  Google Scholar 

  • Kroglund F (2007) Methods to calculate natural water quality in limed lakes in Aust-Agder, Norway. NIVA Rapport 5364-2007 (in Norwegian with English summary)

  • Laudon H, Buffam I (2007) Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network. Hydrol Earth Syst Sci Discuss 4:3145–3173. www.hydrol-earth-syst-sci-discuss.net/4/3145/2007

  • Laudon H, Westling O, Bishop K (2000) Episodic pH and ANC depression during spring flood in Northern Sweden. Can J Fish Aquat Sci 57:1888–1900

    Article  CAS  Google Scholar 

  • Laudon H, Westling O, Löfgren S, Bishop K (2001) Modelling preindustrial ANC and pH during spring flood in Northern Sweden. Biogeochemistry 54:171–195

    Article  CAS  Google Scholar 

  • Laudon H, Vøllestad LA, Poléo ABS, Vøllestad LA, Bishop K (2005) Survival of brown trout during spring flood in DOC-rich streams of northern Sweden: the effect of present deposition and modelled pre-industrial water quality. Environ Pollut 135:121–130

    Article  PubMed  CAS  Google Scholar 

  • Lawrence GB, Sutherland JW, Boylen CW, Nierzwicki-Bauer SW, Momen B, Baldigo BP, Simonin HA (2007) Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids. Environ Sci Technol 41:93–98

    Article  PubMed  CAS  Google Scholar 

  • Lien L, Raddum G, Fjellheim A, Henriksen A (1996) A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Sci Total Environ 177:173–193

    Article  CAS  Google Scholar 

  • Lydersen E, Øxnevad S, Østbye K, Andersen RA, Bjerkely F, Vøllestad LA, Poléo ABS (2002) The effects of ionic strength on the toxicity of aluminium on Atlantic salmon (Salmo salar). J Limnol 61:69–76

    Google Scholar 

  • Lydersen E, Larssen T, Fjeld E (2004) The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Sci Total Environ 326:63–69

    Article  PubMed  CAS  Google Scholar 

  • McCartney AG, Harriman R, Watt AW, Moore DW, Taylor EM, Collen P, Keay EJ (2003) Long-term trends in pH, aluminium and dissolved organic carbon in Scottish fresh waters; implications for brown trout (Salmo trutta) survival. Sci Total Environ 310:133–141

    Article  PubMed  CAS  Google Scholar 

  • Norušis MJ (1994) SPSS advanced statistics 6.1. SPSS Inc., Chicago, United States of America

  • Peterson RH, Bourbonniere RA, Lacroix GL, Martin-Robichaud DJ, Takats P, Brun G (1989) Responses of Atlantic salmon (Salmo salar) alevins to dissolved organic carbon and dissolved aluminum at low pH. Water Air Soil Pollut 46:399–413

    CAS  Google Scholar 

  • Poléo ABS, Lydersen E, Muniz IP (1991) The influence of temperature on aqueous aluminium chemistry and survival of Atlantic salmon (Salmo salar) fingerlings. Aquat Toxicol 21:267–278

    Article  Google Scholar 

  • Rask M, Appelberg M, Hesthagen T, Tammi J, Beier U, Lappalainen A (2000) Fish status survey of Nordic lakes—species composition, distribution, effects of environmental changes. TemaNord report, p 508

  • Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soil and waters. Ecological studies 59. Springer-Verlag, New York

    Google Scholar 

  • Rodhe H, Langner J, Gallardo L, Kjellström E (1995) Global scale transport of acidifying pollutants. Water Air Soil Pollut 85:37–50

    Article  CAS  Google Scholar 

  • Rosseland BO, Staurnes M (1994) Physiological mechanisms for toxic effects and resistance to acidic water: an ecophysiological and ecotoxicological approach. In: Steinberg CEW, Wright RF (eds) Acidification of freshwater ecosystems implications for the future. Wiley, pp 227–246

  • Schindler DW, Mills KH, Malley DF, Findlay DL, Shearer JA, Davies IJ, Turner MA, Linsey GA, Cruikshank DR (1985) Long-term ecosystem stress: the effects of years of experimentally acidification on a small lake. Science 228:1395–1401

    Article  PubMed  Google Scholar 

  • Schindler DW, Frost TM, Mills KH, Chang PSS, Davies IJ, Findlay L, Malley DF, Shearer AJ, Turner MA, Garrison PJ, Watras CJ, Webster K, Gunn JM, Brezonik PL, Swenson WA (1991) Comparisons between experimentally- and atmospherically-acidified lakes during stress and recovery. Proc R Soc Edinb 97B:193–226

    Google Scholar 

  • Serrano I, Buffam I, Palm D, Brännäs E, Laudon H (2008) Thresholds for survival of brown trout (Salmo trutta L.) embryos and juveniles during the spring flood acid pulse in DOC-rich streams. Trans Am Fish Soc (in press)

  • Simonin HA, Kretser WA, Bath DW, Olson M, Gallagher J (1993) In-situ bioassays of brook trout (Salvelinus fontinalis) and blacknose dace (Rhinichthys atratulus) in Adirondack streams affected by episodic acidification. Can J Fish Aquat Sci 50:902–912

    Article  Google Scholar 

  • Skjelkvåle BL (1997) Regional innsjøundersøkelse 1995. Datarapport. Statlig program for forurensningsovervåking, Report 690/97 (in Norwegian)

  • Skjelkvåle BL, Henriksen A, Faafeng B, Fjeld E, Traaen TS, Lien L, Lydersen E, Buan AK (1996) Regional innsjøundersøkelse 1995. En vannkjemisk undersøkelse av 1500 norske innsjøer. Statlig program for forurensningsovervåking, Report 677/96 (in Norwegian wirh English summary)

  • Skjelkvåle BL, Mannio J, Wilander A, Andersen T (2001a) Recovery from acidification of lakes in Finland, Norway and Sweden. Hydrol Earth Syst Sci 5:327–337

    Article  Google Scholar 

  • Skjelkvåle BL, Stoddard JL, Andersen T (2001b) Trends in surface water acidification in Europe and North America (1989–1998). Water Air Soil Pollut 130:787–792

    Article  Google Scholar 

  • Skjelkvåle BL, Stoddard JL, Jeffries D, Tørseth K, Hågåsen T, Bowman J, Mannio J, Monteith D, Moselo R, Rogora M, Rzychon D, Vesely J, Wieting J, Wilander A, Worsztynowicz A (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 137:165–176

    Article  PubMed  CAS  Google Scholar 

  • Tammi J, Appelberg M, Beier U, Hesthagen T, Lappalainen A, Rask M (2003) Fish status survey in Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32:98–105

    Article  PubMed  Google Scholar 

  • Teien H-C, Salbu B, Kroglund F, Heier LS, Rosseland BO (2007) The influence of colloidal material on aluminium speciation and estimated acid neutralizing capacity. Appl Geochem 22:1202–1208

    Article  CAS  Google Scholar 

  • Wilander A, Johnson RK, Goedkoop W (2003) Riksinventering 2000, Institutionen för Miljöanalys, SLU, Report 2003:1. ISSN 1403-977X (in Swedish with English summary)

  • Wilkinson KJ, Campbell PGC, Couture P (1990) Effect of fluoride complexation on aluminum toxicity towards juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 47:1446–1452

    Article  CAS  Google Scholar 

  • Witters HE, Van Puymbroeck S, Vangenechten JHD, Vangenechten OLJ (1990) The effect of humic substances on the toxicity of aluminium to adult rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Biol 37:43–53

    Article  CAS  Google Scholar 

  • Wood CM, McDonald DG (1987) The physiology of acid aluminium stress in trout. In: Witters H, Vanderborght O (eds) Ecophysiology of acid stress in aquatic organisms, vol 117 (Supplement 1). Ann Soc Roy Zool Belg, pp 399–410

Download references

Acknowledgements

We thank Frode Kroglund, Ann Kristin Schartau and Richard Wright for commenting on a draft of this paper, and Stefan Löfgren for giving valuable comments in his review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trygve Hesthagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesthagen, T., Fiske, P. & Skjelkvåle, B.L. Critical limits for acid neutralizing capacity of brown trout (Salmo trutta) in Norwegian lakes differing in organic carbon concentrations. Aquat Ecol 42, 307–316 (2008). https://doi.org/10.1007/s10452-008-9191-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-008-9191-x

Keywords

Navigation