Skip to main content

Advertisement

Log in

The use of rotifers in detecting protozoan parasite infections in recreational lakes

  • Original paper
  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Although well-known methods for the detection of intestinal parasitic protozoans in water samples exist, they are insufficiently sensitive, expensive, of little practical value in the routine monitoring of waterborne pathogens and time- and labour-consuming. In the investigation reported here we have assessed Cryptosporidium oocyst detection using both the so-called Method 1623[recommended by the U.S. Environmental Protection Agency (USEPA)] and a direct method involving the determination of oocysts of Cryptosporidium in rotifers as detection tools of surface water contamination by dispersive stages of intestinal protozoans. Rotifers were sampled from three lakes located near the city of Poznan (Poland). To detect the oocysts of Cryptosporidium, we applied the fluorescent in situ hybridisation technique, an immunofluorescent assay and an enzyme immunoassay. Oocysts of Cryptosporidium were detected both in water collected from the lakes and in rotifers. The FISH technique applied to rotifers enabled the detection of biological contamination of surface water through an assessment of the dispersive stages of the parasite and was found to be more sensitive, less time-consuming and cheaper than the method recommended by the USEPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CSA:

Cryptosporidium-specific antigen

EIA:

Enzyme immunoassay

EPA:

U.S. Environmental Protection Agency

FISH:

Fluorescent in situ hybridisation

IFA:

Immunofluorescent assay

ZN:

Ziehl-Neelsen method

References

  • Anonim (1991) Basic laboratory methods in medical parasitology. World Health Organization (WHO), Geneva

  • Bielańska-Grajner I, Radwan S (1997) Arthropoda-Stawonogi. In: Razowski J (ed) Wykaz zwierząt Polski (A list of animals of Poland), vol. 4, part 1–31. Wydawnictwa Instytutu Systematyki I Ewolucji Zwierząt PAN, Cracow

  • Chalmers RM, Sturdee AP, Mellors P, Nicholson V, Lawlor F, Kenny F, Timpson P (1997) Cryptosporidium parvum in environmental samples in the Sligo area, Republic of Ireland: a preliminary report. Lett Appl Microbiol 25:380–384

    Article  PubMed  CAS  Google Scholar 

  • Dumont HJ (1983) Biotic factors in the population dynamics of rotifers. Biogeography of rotifers. Hydrobiologia 104:19–30

    Article  Google Scholar 

  • Eisenberg JN, Lei X, Hubbard AH, Brookhart MA, Colford JM Jr (2005) The role of disease transmission and conferred immunity in outbreaks: analysis of the 1993 Cryptosporidium outbreak in Milwaukee, Wisconsin. Am J Epidemiol 161:62–72

    Article  PubMed  Google Scholar 

  • Epidemiological reports of the International Society for Infectious Diseases http://www.promedmail.org

  • Fayer R, Lewis EJ, Trout JM, Graczyk TK, Jenkins MC, Higgins J, Xiao L, Lal AA (1999) Cryptosporidium parvum in oysters from commercial harvesting sites in the Chesapeake Bay. Emerg Infect Dis 5:706–710

    Article  PubMed  CAS  Google Scholar 

  • Fayer R, Trout JM, Walsh E, Cole R (2000) Rotifers ingest oocysts of Cryptosporidium parvum. J Eukaryot Microbiol 47:161–163

    Article  PubMed  CAS  Google Scholar 

  • Freire-Santos F, Oteiza-Lopez AM, Castro-Hermida JA, Garcia-Martin O, Ares-Mazas ME (2001) Viability and infectivity of oocysts recovered from clams, Ruditapes philippinarum, experimentally contaminated with Cryptosporidium parvum. Parasitol Res 87:428–430

    Article  PubMed  CAS  Google Scholar 

  • Gołdyn R (2000) Zmiany biologicznych i fizyko-chemicznych cech jakości wody rzecznej pod wpływem jej piętrzenia we wst pnych, nizinnych zbiornikach zaporowych (Changes in biological and physico-chemical parameters of river water quality as a result of its␣damming in preliminary lowland reservoirs). Wydawnictwo UAM, Poznan, Ser Biol no. 65

  • Gomez-Bautista M, Ortega-Mora LM, Lopez-Rodas V, Costas E, Tabarese E (2000) Detection of infectious Cryptosporidium parvum oocysts in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule). Appl Environ Microb 66:1866–1870

    Article  CAS  Google Scholar 

  • Gons HJ (1979) Periphyton in Lake Vechten, with emphasis on biomass and production of epiphytic algae. Hydrobiol Bull 13:116

    Article  Google Scholar 

  • Graczyk TK, Fayer R, Cranfield MR, Owen R (1997) Cryptosporidium parvum oocysts recovered from water by the membrane filter dissolution method retain their infectivity. J Parasitol 83:111–114

    Article  PubMed  CAS  Google Scholar 

  • Graczyk TK, Fayer R, Lewis EJ, Trout JM, Farley CA (1999) Cryptosporidium oocysts in Bent mussels (Ischadium recurvum) in the Chesapeake Bay. Parasitol Res 85:518–521

    Article  PubMed  CAS  Google Scholar 

  • Graczyk TK, Marcogliese DJ, de Lafontaine Y, Da Silva AJ, Mhangami-Ruwende B, Pieniazek NJ (2001) Cryptosporidium parvum oocysts in zebra mussels (Dreissena polymorpha): evidence from the St Lawrence River. Parasitol Res 87:231–234

    Article  PubMed  CAS  Google Scholar 

  • Graczyk TK, Grimes BH, Knight R, Da Silva AJ, Pieniazek NJ, Veal DA (2003) Detection of Cryptosporidium parvum and Giardia lamblia carried by synanthropic flies by combined fluorescent in situ hybridization and a monoclonal antibody. Am J Trop Med Hyg 68:228–232

    PubMed  Google Scholar 

  • Jürgens K, Arndt H, Rothhaupt KO (1994) Zooplankton-mediated changes of bacterial community structure. Microbiol Ecol 27:27–42

    Article  Google Scholar 

  • Karabin A (1985) Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekol Pol 33:567–616

    Google Scholar 

  • Lowery CJ, Nugent P, Moore JE, Millar BC, Xiru X, Dooley JS (2001) PCR-IMS detection and molecular typing of Cryptosporidium parvum recovered from a recreational river source and an associated mussel (Mytilus edulis) bed in Northern Ireland. Epidemiol Infect 127:545–553

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie WR, Hoxie NJ, Proctor ME, Gradus MS, Blair KA, Peterson DE, Kazmierczak JJ, Addiss DG, Fox KR, Rose JB, Davis JP (1994) A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 331:161–167

    Article  CAS  Google Scholar 

  • MacKenzie WR, Schell WL, Blair KA, Addiss DG, Peterson DE, Hoxie NJ, Kazmierczak JJ, Davis JP (1995) Massive outbreak of waterborne Cryptosporidium infection in Milwaukee, Wisconsin: recurrence of illness and risk of secondary transmission. Clin Infect Dis 21:57–62

    PubMed  CAS  Google Scholar 

  • Majewska AC, Graczyk TK, Słodkowicz-Kowalska A, Kuczyńska-Kippen N, Werner A, Nowosad P (2003a) Rotifera i skorupiaki planktonowe jako bioindykatory zanieczyszczenia wód powierzchniowych stadiami dyspersyjnymi pierwotniaków jelitowych. Badania pilotażowe (Rotifers and crustaceans as bioindicators of surface water contamination with dispersive stages of intestinal protozoan parasites. Initial research). In: Proc Mol Conf Epidemiol Diagn Parasitoses. Poznan, Poland, pp 9–11

  • Majewska AC, Graczyk TK, Słodkowicz-Kowalska A, Kuczyńska-Kippen N, Werner A, Nowosad P (2003b) Use of rotifers and FISH assay for detection of intestinal protozoan parasites in surface waters. In: Abstr Conf Biol Chem Contamination Food. Warsaw, Poland, p 39

  • Mäemets A (1983) Rotifers as indicators of lake types in Estonia. Hydrobiologia 104:357–361

    Article  Google Scholar 

  • Quintero-Betancourt W, Peele ER, Rose JB (2002) Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. J Microbiol Methods 49:209–224

    Article  PubMed  Google Scholar 

  • Saksena DN (1987) Rotifers as indicators of water quality. Acta Hydrochim Hydrobiol 15:481–485

    Article  Google Scholar 

  • Sládeček V (1983) Rotifers as indicators of water quality. Hydrobiologia 100:169–201

    Article  Google Scholar 

  • Stott R, May E, Ramirez E, Warren A (2003) Predation of Cryptosporidium oocysts by protozoa and rotifers: implications for water quality and public health. Water Sci Technol 47:77–83

    PubMed  CAS  Google Scholar 

  • Telliard WA (1999) Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. US EPA Office of Water

  • Theil-Nielsen J, Søndergaard M (1999) Production of epiphytic bacteria and bacterioplankton in three shallow lakes. Oikos 86:283–292

    Article  Google Scholar 

  • Trout JM, Walsh EJ, Fayer R (2002) Rotifers ingest Giardia cysts. J Parasitol 88:1038–1040

    PubMed  CAS  Google Scholar 

  • Vesey G, Slade JS, Byrne M, Sheperd K, Fricker CR (1993) A new method for the concentration of Cryptosporidium oocyst from water. J Appl Microbiol 75:82–86

    CAS  Google Scholar 

  • Vesey G, Ashbolt N, Ficker EJ, Deere D, Williams KL, Veal DA, Dorsch M (1998) The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labeling of viable Cryptosporidium parvum oocysts. J␣Appl Microbiol 85:429–440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Interdisciplinary Grant between the Poznan University of Medical Sciences and Adam Mickiewicz University (Poznan, Poland, Grant No. 502-06-1-0006467) and a NATO Collaborative Linkage Grant (Brussels, Belgium, Grant No. CLG 979765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Nowosad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowosad, P., Kuczyńska-Kippen, N., Słodkowicz-Kowalska, A. et al. The use of rotifers in detecting protozoan parasite infections in recreational lakes. Aquat Ecol 41, 47–54 (2007). https://doi.org/10.1007/s10452-006-9043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-006-9043-5

Keywords

Navigation