Aquatic Ecology

, Volume 40, Issue 3, pp 373–380 | Cite as

Effect of Silt, Water and Periphyton Quality on Survival and Growth of the Mayfly Heptagenia  Sulphurea

  • Edwin T. H. M. PeetersEmail author
  • Bart T. M. J. Brugmans
  • John A. J. Beijer
  • Rob J. M. Franken


The herbivorous mayfly Heptagenia  sulphurea is characteristic of rivers with stony bottoms. Records from the 20th century showed that this species had disappeared from the Common Meuse in the Netherlands, probably due to river regulation or changes in water quality. A field survey in 2003 showed that H. sulphurea was present in the Geul tributary, approximately 300 m upstream of its confluence with the Common Meuse. H. sulphurea has not recolonized the Common Meuse despite improvements in water quality over the last decades. Concentration of suspended sediments in the River Meuse, however, is still high, much higher than in the beginning of the 20th century. The presence of a silt layer may limit the return of H. sulphurea in this river by reducing availability and quality of its food. The prime objective of this study was to investigate the impact of silt on survival and growth of H. sulphurea in a laboratory experiment. Furthermore, the impact of water and periphyton quality from the Common Meuse on survival and growth of this mayfly was also investigated. Results showed that neither water quality nor cultured periphyton from the Common Meuse reduced survival and growth of H. sulphurea. The presence of a silt layer resulted in a significantly lower growth rate of the mayfly larvae. It is concluded that the silt layer reduces the accessibility of the food. Covering of food is possibly one of the main factors limiting the recolonization of H. sulphurea and probably other benthic grazers in the Common Meuse.


Macroinvertebrates Periphyton Recolonization Siltation Suspended sediments Water quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiraal W.G., Van der Velde G., Smit H., Cazemier W.G. (1993) The rivers Rhine and Meuse in the Netherlands: present state and signs of recovery. Hydrobiologia 265: 97–128Google Scholar
  2. Albarda H. (1889) Cataloque raisonné et synonymique des Néuroptères observés dans les Pays Bas et dans les pays limitrophes. Tijdschr. Entomol. 32: 211–375Google Scholar
  3. Allan J.D. (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35: 257–284CrossRefGoogle Scholar
  4. Bauernfeind E., Moog O. (2000) Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422/423: 71–83CrossRefGoogle Scholar
  5. Bij de Vaate A. (1995) Macroinvertebrate communities in the Grensmaas stretch of the River Meuse 1981–1990. J. Freshwat. Ecol. 10: 75–82Google Scholar
  6. Bij de Vaate A. (2003). Degradation and recovery of the freshwater fauna in the lower sections of the rivers Rhine and Meuse. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  7. Brittain J.E., Eikeland T.J. (1988) Invertebrate drift – a review. Hydrobiologia 166: 77–93CrossRefGoogle Scholar
  8. Carlisle D.M., Clements W.H. (2003) Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams. J. N. Am. Benthol. Soc. 22: 582–597CrossRefGoogle Scholar
  9. Courtney L.A., Clements W.H. (2002) Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal polluted stream: an experimental approach. Freshwat. Biol. 47: 1766–1778CrossRefGoogle Scholar
  10. Doeg T.J., Milledge G.A. (1991) Effects of experimentally increasing concentrations of suspended sediment on macroinvertebrate drift. Aust. J. Mar. Freshwat. Res. 42: 519–526CrossRefGoogle Scholar
  11. Duizendstra H.D. (2001) Measuring, observing and pattern recognition of sediment transport in an armoured river using a sampler with attached underwater camera. Phys. Chem. Earth. (B) 26: 59–64CrossRefGoogle Scholar
  12. Guasch H., Admiraal W., Sabate S. (2003) Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat. Toxicol. 64: 165–175PubMedCrossRefGoogle Scholar
  13. Henley W.F., Patterson M.A., Neves R.J., Lemly A.D. (2000) Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Rev. Fish. Sci. 8:125–139CrossRefGoogle Scholar
  14. Hickey C.W., Golding L.A. (2002) Response of macroinvertebrates to copper and zinc in a stream mesocosm. Environ. Toxicol. Chem. 21:1854–1863PubMedCrossRefGoogle Scholar
  15. Hynes H.B.N. (1970). The Ecology of Running Waters. Liverpool University Press, Liverpool.Google Scholar
  16. Lemly A.D. (1982) Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment. Hydrobiologia 87:229–245Google Scholar
  17. Lenat D.R., Penrose D.L., Eagleson K.W. (1981) Variable effects of sediment addition on stream benthos. Hydrobiologia 79:187–194CrossRefGoogle Scholar
  18. Macan T.T. (1957) The Ephemeroptera of a stony stream. J. Anim. Ecol. 26:317–342CrossRefGoogle Scholar
  19. Martin D.C. and Neely R.K. (2001) Benthic macroinvertebrate response to sedimentation in a Typha  angustifolia L. wetland. Wetlands. Ecol. Manage. 9:441–454CrossRefGoogle Scholar
  20. Merritt R.W. and Cummins K.W. 1984. An introduction to the aquatic insects of North America, 2nd edn. Kendall/Hunt, Dubuque.Google Scholar
  21. Micha J.C., Borlee M.C. (1989) Recent historical changes on the Belgian Meuse. In: Petts G.E., Möller H., Roux A.L. (eds), Historical Change of Large Alluvial Rivers: Western Europe. John Wiley and Sons Ltd, Chichester, pp. 269–295Google Scholar
  22. Minshall G.W. (1984) Aquatic insect-substratum relationships. In: Resh V.H., Rosenberg D.M. (eds), The Ecology of Aquatic Insects. Praeger Scientific, New York, pp. 358–400Google Scholar
  23. Osmundson D.B., Ryel R.J., Lamarra V.L., Pitlick J. (2002) Flow-sediment-biota relations: implications for river regulation effects on native fish abundance. Ecol. Appl. 12: 1719–1739Google Scholar
  24. Quinn J.M., Davies-Colley R.J., Hickey C.W., Vickers M.L., Ryan P.A. (1992) Effects of clay discharges on streams. 2. Benthic invertebrates. Hydrobiologia 248:235–247CrossRefGoogle Scholar
  25. Redeke H.C. 1948. Hydrobiologie van Nederland. De zoete wateren. Uitgeverij C. De Boer Jr., Amsterdam, The Netherlands (in Dutch).Google Scholar
  26. Stuijfzand S.C., Engels S., Van Ammelrooy E., Jonker M. (1999) Caddisflies (Trichoptera: Hydropsychidae) used for evaluating water quality of large European rivers. Arch. Environ. Contam. Toxicol. 36:186–192PubMedCrossRefGoogle Scholar
  27. Tseng M. (2003) Life-history responses of a mayfly to seasonal constraints and predation risk. Ecol. Entomol. 28:119–123CrossRefGoogle Scholar
  28. Van den Burg M.C., Rademakers J.G.M., Klink A. and Lucassen J.H.T. 2000. Sediment in the main channel of the river Meuse, study on the quantitative effects of sediment on the ecological development. Reports of the project “Ecological Rehabilitation of the River Meuse” EHM No 32, Institute for Inland Water Management and Waste Water Treatment, Arnhem, The Netherlands (in Dutch).Google Scholar
  29. Walling D.E., Webb B.W. (1992) Water Quality I: Physical characteristics. In: Calow P. and Petts G.E. (eds), The Rivers Handbook, Vol. 1. Blackwell Scientific Publications, Oxford, pp. 48–72Google Scholar
  30. Yamada H., Nakamura F. (2002) Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, northern Japan. River. Res. Appl. 18: 481–493CrossRefGoogle Scholar
  31. Zweig L.D., Rabeni C.F. (2001) Biomonitoring for deposited sediment using benthic macroinvertebrates: a test on 4 Missouri streams. J. N. Am. Benthol. Soc. 20: 643–657CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Edwin T. H. M. Peeters
    • 1
    Email author
  • Bart T. M. J. Brugmans
    • 1
  • John A. J. Beijer
    • 1
  • Rob J. M. Franken
    • 1
  1. 1.Aquatic Ecology and Water Quality Management Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations