Skip to main content

Advertisement

Log in

Succession and collapse of macrozoobenthos in a subtropical hypertrophic lake under restoration (Lake Rodó, Uruguay)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We studied the succession patterns of the benthic community following a whole-lake restoration experiment in a subtropical hypertrophic lake (Lake Rodó, 34°55′ S 56°10′ W, Montevideo, Uruguay). The restoration measures involved diversion of the main inlet and removal of upper 1-m sediment and biomanipulation of the fish community. Between January 1997 and November 1999, we sampled sediments seasonally to analyse changes in benthos in relation to other abiotic and biotic characteristics of the system. The benthic community of the lake was composed of three families and nine genera. The maximum density (646 ind m−2), as well as the maximum taxonomic richness (six), were observed 1 month after the lake was refilled. Since 1998, the benthic abundance decreased considerably and continuously and a total absence of benthic organisms was registered by the end of the year. The low abundance of macroinvertebrates during 1997 could be explained by the food preferences of the dominant fish species, and the high fish biomass at the beginning of the biomanipulation process. However, the most relevant physico-chemical temporal patterns were the increase of organic matter and nutrients in the sediment and the fluctuations of oxygen and nitrate in the deepest layer of the water column. The disappearance of benthos was related to these temporal changes. These results stress the importance of the increase of organic matter for the changes in the physico-chemical environment, and its importance in the benthic succession and possible collapse. We suggest that in hypertrophic lakes, the effects of organic matter enrichment in the sediment can be even more relevant than fish predation in shaping the zoobenthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (1985). Standard methods for the examination of water and wastewater. APHA/AWWA/WPCF, Washington, USA

    Google Scholar 

  • Bazzanti M., Seminara M. and Baldoni S. (1997). Chironomids (Diptera: Chironomidae) from three temporary ponds of different wet phase duration in central Italy. J. Freshwater Ecol. 12:89–99

    CAS  Google Scholar 

  • Bendschneider K. and Robinson R.J. (1952). A new spectrophotometric method for the determination of nitrite in sea water. J. Mar. Res. 11:87–96

    CAS  Google Scholar 

  • Birch S. and McCaskie J. (1999). Shallow urban lakes: a challenge for lake management. Hydrobiologia 395/396:365–377

    Article  CAS  Google Scholar 

  • Burks R.L., Jeppesen E. and Lodge D.M. (2001). Pelagic prey and benthic predators: impact of odonate predation on Daphnia among complex structure. J. North Am. Benthol. Soc. 20:683–696

    Article  Google Scholar 

  • Clerk S., Hall R., Quinlan R. and Smol J.P. (2000). Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolimnol. 23:319–336

    Article  Google Scholar 

  • Devine J.A. and Vanni M.J. (2002). Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir. Freshwater Biol. 47:1107–1121

    Article  Google Scholar 

  • Fisher S.G. (1990). Recovery processes in lotic ecosystems: Limits of succession theory. Environ. Manage. 14:725–736

    Article  Google Scholar 

  • Fisher S. and Grimm N. (1991). Streams and disturbance: Are cross-ecosystems comparison useful?. In: Cole J., Lowet G. and Findlay S. (eds) Comparative Analysis of Ecosystems Patterns, Mechanisms and Theories. Springer Verlag, New York, USA, pp. 196–221

    Google Scholar 

  • Frazier B., Naimo T. and Sandheinrich M. (1996). Temporal and vertical distribution of total ammonia nitrogen and un-ionized ammonia nitrogen in sediment pore water from the upper Mississippi River. Environ. Toxicol. Chemistry 15:92–99

    Article  CAS  Google Scholar 

  • Folk R. and Ward W. (1957). Brazos River Bar: a study on the significance of grain size parameters. J. Sediment. Petrol. 27:3–26

    Google Scholar 

  • Grall J. and Chauvaud L. (2002). Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biol. 8:813–830

    Article  Google Scholar 

  • Häkanson L. and Jansson M. (1983). Principles of lake sedimentology. Springer Verlag, New York, USA

    Google Scholar 

  • Hall R.I., Leavitt P.R., Quinlan R., Dixit A.S. and Smol J. (1999). Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44:739–756

    Article  CAS  Google Scholar 

  • Hansen K., Mouridsen S. and Kristensen E. (1998). The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in shallow lake sediment following a phytoplankton sedimentation. Hydrobiologia 364:65–74

    Article  Google Scholar 

  • Harrel R.C. and Smith S.T. (2002). Macrobenthic community structure before, during and after implementation of the Clean Water Act in the Neches River estuary (Texas). Hydrobiologia 474:213–222

    Article  Google Scholar 

  • Heip C. (1995). Eutrophication and zoobenthos dynamics. Ophelia 41:113–136

    Google Scholar 

  • Hosper H. (1997). Clearing lakes. An ecosystem approach to restoration and management of lakes in the Netherlands. Ministry of Transport, Public Works and Water Management Institute for Inland Water Management and Wastewater Treatment (RIZA). Lelystad, the Netherlands

    Google Scholar 

  • James F.C. and McCulloch C.E. (1990). Multivariate analysis in ecology and systematics: panacea or Pandora’s box?. Ann. Rev. Ecol. Syst. 21:129–166

    Google Scholar 

  • Jeppesen E. (1998). The Ecology of Shallow Lakes Doctor’s. National Environmental Research Institute, Silkeborg, Denmark

    Google Scholar 

  • Jones J.I. and Sayer C.D. (2003). Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes?. Ecology 84:2155–2167

    Article  Google Scholar 

  • Kornijów R. and Gulati R.D. (1992). Macrofauna and its ecology in Lake Zwemlust, after biomanipulation. I. Bottom fauna. Arch. Hydrobiol. 123:337–347

    Google Scholar 

  • Koroleff F. 1970. Direct determination of ammonia in natural water as indophenol-blue. Hydr. Comm. ICES, C. M. 1969/C9

  • Kruk C., Mazzeo N., Lacerot G. and Reynolds C.S. (2002). Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. J. Plankton Res. 24:901–912

    Article  Google Scholar 

  • Leppä M., Hämäläinen H. and Karjalainen J. (2003). The response of benthic macroinvertebrates to whole-lake biomanipulation. Hydrobiologia 498:97–105

    Article  Google Scholar 

  • Lotter A.F., Birks H.J., Hofmann W. and Marchetto A. (1998). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolimol. 19:443–463

    Article  Google Scholar 

  • Mazzeo N., Lacerot G., Kruk C., Scasso F., Rodríguez-Gallego L.,Clemente J. and García J. 2000. Lake Rivera: present situation and strategies for its rehabilitation. Technical Report, Facultad de Ciencias- IMM, Montevideo, Uruguay (in Spanish)

  • Meerhoff M., Mazzeo N., Moss B. and Rodríguez-Gallego L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecol. 37:377–391

    Article  Google Scholar 

  • Milbrink G., Timm T. and Lundberg S. (2002). Indicative profundal oligochaete assemblages in selected small Swedish lakes. Hydrobiologia 468:53–61

    Article  Google Scholar 

  • Moss B., Madgwick J. and Phillips G. (1996). A guide to the restoration of nutrient-enriched shallow lakes. Environment Agency (CE), Norwich UK

    Google Scholar 

  • Müller R. and Widemann O. (1955). Die Bestimmung des Nitrat-ions in Wasser. Von Wasser 22:247

    Google Scholar 

  • Murphy J. and Riley J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nijboer R.C., Wetzel M.J. and Verdonschot P.F. (2004). Diversity and distribution of Tubificidae (Annelida:Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520:127–141

    Article  Google Scholar 

  • Nusch E.A. (1980). Comparison of different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 17:14–36

    Google Scholar 

  • Olding DA, Hellebust J.A. and Douglas M.S. (2000). Phytoplankton community composition in relation to water quality and water-body morphometry in urban lakes, reservoirs and ponds. Can. J. Fish. Aquat. Sci. 57:2163–2174

    Article  Google Scholar 

  • Pearson T.H. and Rosenberg R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16:229–311

    Google Scholar 

  • Peralta L., Escobar E., Alcocer J. and Lugo A. (2002). Oligochaetes from six tropical crater lakes in Central Mexico: species composition, density and biomass. Hydrobiologia 467:109–116

    Article  Google Scholar 

  • Pokorný J. and Hauser V. (2002). The restoration of fish ponds in agricultural landscapes. Ecol. Engineer. 18:555–574

    Article  Google Scholar 

  • Quintans F., Scasso F., Loureiro M. and Yafe A. Diet of Cnesterodon decemmaculatus (Poeciliidae) and Jenynsia multidentata (Anablepidae) in a man-made lake. Submitted.

  • Real M., Rieradevall M. and Prat N. (2000). Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biol. 43:1–18

    Article  Google Scholar 

  • Rodríguez-Gallego L., Mazzeo N., Gorga J., Meerhoff M., Clemente J., Kruk C., Scasso F., Lacerot G., García J. and Quintans F. (2004). Effects of an artificial wetland of free-floating plants on the restoration of a hypertrophic subtropical lakes. Lakes Reserv. Res. Manage. 9:203–215

    Article  Google Scholar 

  • Salas H.J. and Martino P. (1991). A simplified phosphorus trophic state model for warm-water tropical lake. Water Res. 25:341–350

    Article  CAS  Google Scholar 

  • Scasso F., Mazzeo N., Gorga J., Kruk C., Lacerot G., Clemente J., Fabián D. and Bonilla S. (2001). Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquat. Conserv. Mar. Freshwater Ecosys. 11:31–44

    Article  Google Scholar 

  • Schindler D.E. and Scheuerell M.D. (2002). Habitat coupling in lake ecosystems. Oikos 98:177–189

    Article  Google Scholar 

  • Sparks R.E. and Sandusky M.J. (1981). Identification of factors responsible for decreased production of fish food organisms in the Illinois and Mississipi Rivers. Illinois Natural History Survey River Research Laboratory, Havana II., USA, Final Report Project 3-291-R

    Google Scholar 

  • Stumn W. and Morgan J.J. 1996. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. 3rd ed.

  • Vadeboncoeur Y., Jeppesen E., Vander Zanden M.J., Schierup H.-H., Christoffersen K. and Lodge D.M. (2003). From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48:1408–1418

    Article  Google Scholar 

  • Valderrama J.C. (1981). The simultaneous analysis of total N and P in natural waters. Mar. Chem. 10:1009–1022

    Article  Google Scholar 

  • Vanni M.J. (2002). Nutrient cycling by animals in freshwater ecosystems. Ann. Rev. Ecol. Syst. 33:341–370

    Article  Google Scholar 

  • Wilson D.M., Naimo T.J., Wiener J.G., Anderson R.V., Sandheinrich M.B. and Sparks R.E. (1995). Declining populations of the fingernail clamMusculium transversum in the upper Mississippi River. Hydrobiologia 304:209–220

    Article  Google Scholar 

  • Yafe A., Loureiro M., Scasso F. and Quintans F. (2002). Feeding of two cichlidae species (perciformes) in a hypertrophic urban lake. Iheringia, Ser. Zool. 92:73–79

    Google Scholar 

Download references

Acknowledgements

We acknowledge the field and lab collaboration of Flavio Scasso, Dámaso Cagliari, Javier García, and Federico Quintans (fish), and Lorena Rodríguez-Gallego, Carla Kruk and Gissell Lacerot (plankton and chemistry). Special thanks to Fernando Nopitsch and Daniel Antonello for support in various aspects. We are very grateful for the comments of Pablo Muniz and the support of Erik Jeppesen and NERI, Denmark, and three anonymous reviewers. Anne-Mette Poulsen kindly provided editorial assistance. This study was supported by the Municipality of Montevideo (IMM), the National Council for Scientific and Technological Research of Uruguay (CONICYT No. 4050), the Council of Scientific Research (CSIC, Universidad de la República) and the British Embassy in Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan María Clemente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemente, J., Mazzeo, N., Gorga, J. et al. Succession and collapse of macrozoobenthos in a subtropical hypertrophic lake under restoration (Lake Rodó, Uruguay). Aquat Ecol 39, 455–464 (2005). https://doi.org/10.1007/s10452-005-9004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-005-9004-4

Keywords

Navigation