Skip to main content
Log in

Bioaccumulation of Trace Elements in Roach, Silver Bream, Rudd, and Perch Living in an Inundated Opencast Sulphur Mine

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The contents of Cd, Pb, Cu, Mn, Fe, and Sr were determined in bottom sediment and fish in Piaseczno lake (inundated opencast sulphur mine, southern Poland) from April 2001 to January 2002. To determine the mobility and availability of these elements in the 0–5 cm layer of the sediment, a 6-step sequential extraction procedure was applied. Generally, in the sediment the amounts of Cd were low, of Pb and Cu were elevated, but of Mn, Fe, and Sr were very high. Risk of contamination of water by Sr and Mn estimated using individual contamination factor was much higher than by Cd, Pb, Cu and Fe. A relationship was found between the contents of the metals in some fish tissues and their trophic habits. According to bioconcentration factor Sr and Mn, which posed the highest risks to water contamination were concentrated to a greatest degree in benthivorous fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen-Gil S.M. and Martynov V.G. (1995). Heavy metal burdens in nine species of freshwater and anadromous fish from the Pechora Rivernorthern Russia. Sci. Total Environ. 160(161): 653–659

    PubMed  Google Scholar 

  • Amundsen P.-A., Staldvik F.J., Lukin A.A., Kashulin N.A., Popova O.A. and Reshetnikov Y.S. (1997). Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci. Total Environ. 201: 211–224

    Article  PubMed  CAS  Google Scholar 

  • Andersen D.O. and Pempkowiak J. (1999). Sediment content of metals before and after lake water liming. Sci. Total Environ. 244: 107–118

    Article  Google Scholar 

  • Andres S., Ribeyre F., Tourencq J.N. and Boudou A. (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot RiverFrance). Sci. Total Environ. 248: 11–25

    Article  PubMed  CAS  Google Scholar 

  • Babukutty Y. and Chacko J. (1995). Chemical partitioning and bioavailability of lead and nickel in an estuarine system. Environ. Toxicol. Chem. 14: 427–434

    CAS  Google Scholar 

  • Barak N.A.B. and Mason C.F. (1990). Mercury, cadmium and lead concentrations in five species of freshwater fish from eastern England. Sci. Total Environ. 92: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Batley G.E. (1990). Trace Element Speciation: Analytical Methods and Problems. CRC Press, Inc., Boca Raton, Florida, USA

    Google Scholar 

  • Bendel Young L. and Harvey H.H. (1991). Metal concentrations in chironomids in relation to the geochemical characteristics of surficial sediments. Arch. Environ. Contam. Toxicol. 21: 202–211

    Article  Google Scholar 

  • Berninger K. and Pennanen J. (1995). Heavy metals in perch (Perca fluviatilis L) from two acidified lakes in the Salpausselkä Esker area in Finland. WaterAir Soil Pollut. 81: 283–294

    Article  CAS  Google Scholar 

  • Bervoets L., Blust R., de Wit M. and Verheyen R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ. Pollut. 95(3): 345–356

    Article  PubMed  CAS  Google Scholar 

  • Bervoets L., Solis D., Romero A.M. and Ollevier F. (1998). Trace metal levels in chironomid larvae and sediments from a Bolivian river: Impact of mining activities. Ecotoxicol. Environ. Safety 41(3): 275–283

    Article  PubMed  CAS  Google Scholar 

  • Bojakowska I., Gliwicz T. and Sokołowska G. (2000). Wyniki monitoringu geochemicznego osadów wodnych w Polsce w latach 1998–1999 [The Results of Geochemical Monitoring of Bottom Sediment in Poland in Years 1998–1999]. Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, Warszawa

    Google Scholar 

  • Brown M.W., Thomas D.G., Shurben D., Solbe J.F.L.G., Kay J. and Cryer A. (1986). Comp. Biochem. Physiol. 84C: 213–217

    CAS  Google Scholar 

  • Burrows I.G. and Whitton B.A. (1983). heavy metals in watersediment and invertebrates from a metal-contaminated river free or organic pollution. Hydrobiologia 106: 263–273

    Article  CAS  Google Scholar 

  • Cain D.J., Carter J.L., Fend S.V., Luoma S.N., Alpers C.N. and Taylor H.E. (2000). Metal exposure in a benthic macroinvertebrateHydropsyehe ealifomiearelated to mine drainage in the Sacramento River. Can. J. Fish. Aquat. Sci. 57(2): 380–390

    Article  CAS  Google Scholar 

  • Calmano W. and Förstner U. (1983). Chemical extraction of heavy metals in polluted rivers in central Europe. Sci. Total Environ. 28: 77–90

    Article  CAS  Google Scholar 

  • Cappuyns V. and Swennen R. (2004). Secondary mobilisation of heavy metals in overbank sediments. J. Environ. Monitor. 6(5): 434–440

    Article  CAS  Google Scholar 

  • Carru A.-M., Teil M.J., Blanchard M., Chevreuil M. and Chesterikoff A. (1996). Evaluation of the roach (Rutilus rutilus) and the perch (Perea fluviatilis) for the biomonitoring of metal pollution. J. Environ. Sci. Health A31: 1149–1158

    Article  CAS  Google Scholar 

  • Chevreuil M., Carro A.-M., Chesterikoff A., Boët P., Tales E. and Allardi J. (1995). Sci Total Environ. 162: 31–42

    Article  PubMed  CAS  Google Scholar 

  • de Bisthoven L.J., Postma J.F., Parren P., Timmermans K.R. and Ollevier F. (1998). Relations between heavy metals in aquatic sediments and in Chironomus larvae of Belgian lowland rivers and their morphological deformities. Can. J. Fish. Aquat. Sci. 55(3): 688–703

    Article  CAS  Google Scholar 

  • De Boeck G., Ngo T.T.H. and Blust R. (2003). Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat. Toxicol. 65(4): 413–424

    PubMed  CAS  Google Scholar 

  • Dobicki W. 1990. Skaėenie metalami cięėkimi tkanek ryb ėyjących na terenach wodonośnych m. Wrocławia [Fish contamination with the heavy metals in water-bearing area in Wrocław]. Zesz Nauk AR Wrocław 182(Zootechn 32): 127–135

    CAS  Google Scholar 

  • Dobrowolski R. and Skowrońska M. (2001). Distribution and environmental mobility of selected trace metals in the Zemborzyce Reservoir. Polish J. Environ. Studies 10(5): 383–388

    CAS  Google Scholar 

  • Drbal K. and Svobodová Z. (1980). Cooper content in fish after short-time exposure to cupric sulphate pentahydrate. Buletin VÚRH Vodňany 4: 9–13

    Google Scholar 

  • EI Bilali L., Rasmussen P.E., Hall G.E.M. and Fortin D. (2002). Role of sediment composition in trace metal distribution in lake sediment. Appl. Geochem. 17: 1171–1181

    Article  Google Scholar 

  • Förstner U. (1986). Metal speciation in solid wastes–factors affecting mobility. In: Landner, W. (eds) Speciation of Metals in WaterSediment and Soil Systems, pp 13–40. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo

    Google Scholar 

  • Förstner U. and Calmano W. (1982). Bindungsformen von Schwermetallen in Baggerschlämmen. Vom Wasser 59: 83–93

    Google Scholar 

  • Frank A. (1984). Automatic wet ashing. Assoc. Official Analyt. Chem. 7: 5

    Google Scholar 

  • Galvez-Cloutier R. and Dubé J.-S. (1996). An evaluation of fresh water sediments contamination: the Lachine canal sediments caseMontreal, Canada. Part II. Heavy metal particulate speciation study. WaterAirSoil Pollut. 102: 281–302

    Article  Google Scholar 

  • Glushankova M.A. and Pashkova I.M. (1992). Heavy metals in tissues of fish of the Pskovsko-Chudskoye and Virts’yarv Lakes. Tsitologiya 34: 46–50

    CAS  Google Scholar 

  • Gurierri J.T. (1998). Distribution of metals in water and sediment and effect on aquatic biota in the upper Stillwater River basin, Montana. J. Geochem. Explor. 64: 83–100

    Article  Google Scholar 

  • Hakånson L. (1984). Metals in fish and sediments from the River Kolbäcksån water system. Sweden. Arch. Hydrobiol. 101: 373–400

    Google Scholar 

  • Hlavay J. and Polyák K. (1998). Chemical speciation of elements in sediment samples collected at Lake Balaton. Microchem. J. 58: 281–290

    Article  CAS  Google Scholar 

  • Ikem A., Egiebor N.O. and Nyavor K. (2003). Trace elements in waterfish and sediment from Tuskegee LakeSoutheastern USA. WaterAirSoil Pollut. 149: 51–75

    Article  CAS  Google Scholar 

  • Jezierska B. and Witeska M. (2001). Metal Toxicity to Fish. Wyd. Akademii Podlaskiej (Monografie42), Siedlce

    Google Scholar 

  • Klavinš M., Briede A., Parele E., Rodinov V. and Klavin I. (1998). Metal accumulation in sediments and benthic invertebrates in lakes of Latvia. Chemosphere 36: 3043–3053

    Article  Google Scholar 

  • Kostecki M. (2000). Heavy metals in flesh and liver of some fish species in DzierZno Duze dam-reservoir (Upper Silesia). Arch. Environ. Protect. 26: 109–125

    CAS  Google Scholar 

  • Kroupa M. and Hartvich P. (1990). Selected heavy metals in the tissues of fish in the Lužnice River. Živoc Vyr 35: 937–943

    Google Scholar 

  • Lacerda L.D., Fernandez M.A., Calazans C.F. and Tanizaki K.F. (1992). Bioavailability of heavy metals in sediments of two coastal lagoons in Rio de JaneiroBrazil. Hydrobiologia 228: 65–70

    Article  CAS  Google Scholar 

  • La Force M.J., Fendorf S., Li G.C. and Rosenzweig R.F. (1999). Redistribution of trace elements from contaminated sediments of Lake Coeur d’Alene during oxygenation. J. Environ. Quality 28(4): 1195–1200

    Article  CAS  Google Scholar 

  • Langevoord M., Kraak M., Kraal M. and Davids C. (1995). Importance of prey choice for Cd uptake by carp (Cyprinus carpio) finger-lings. J. N Am. Benthol. Soc. 14: 423–429

    Article  Google Scholar 

  • Malarevskaya A.Ya. and Karasina F.M. (1991). Dynamics of accumulation of heavy metals and total thiamine in fish. Gidrobiol. Z. 27: 69–74

    Google Scholar 

  • Marek J. (1997). Heavy Metals in Water Environment in the Barycz valley (dolina). An Estimation of Treat of the Fish Farming. Department of Limnology and Fisheries, Wroclaw

    Google Scholar 

  • Martinez E.A., Moore B.C., Schaumłoffel J. and Dasgupta N. (2002). The potential association between mental deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Arch. Environ. Contam. Toxicol. 42(3): 286–291

    Article  PubMed  CAS  Google Scholar 

  • Moiseenko T.I., Kudryavtseva L.P., Rodyushkin I.V., Dauvalter V.A., Lukin A.A. and Kashulin N.A. (1995). Airborne contamination by heavy metals and aluminium in the freshwater ecosystem of Kola subarctic region (Russia). Sci. Total Environ. 160(161): 715–727

    Google Scholar 

  • Müller G. and Prosi F. (1978). Distribution of zinc, copperand cadmium in various organs of roaches (Rutilus rutilus L) from the Neckar and Elsenz Rivers. Z. Nuturforsch. 33: 7–14

    Google Scholar 

  • Nowack B., Karl F.G. and Krüger H.G. (2001). The remobilisation of metals from iron oxides and sediments by metal–EDTA complexes. WaterAirSoil Pollut. 125: 243–257

    Article  CAS  Google Scholar 

  • Olsson P.E. and Kille E. (1997). Functional comparison of the metal-regulated transcriptional control regions of metallothionein genes from cadmium-sensitive and tolerant fish species. BBA-Gene Struct. Exp. 1350: 325–334

    CAS  Google Scholar 

  • Pawłowski S., Pawłowska K. and Kubica B. (1985). Sulphur mine in Tarnobrzeg. Przeghtd Geologiczny 6: 252–257

    Google Scholar 

  • Petkevičiūtė D. and Marčiulionienė D. (1999). Accumulation of 60Co and 54Mn in hydrobionts of lake Drūkšiai. In: Lovejoy, D.A. (eds) Heavy Metals in the Environments: An Integrated Approach, pp 46–51. Vilnius, Lithuania

    Google Scholar 

  • Pružina I., Kurfûrst J., Svatos Z. and Jiroutová V. 1993. Content of leadcadmium and mercury in roach (Rutilus rutilus) and perch (Perca fluviatilis) from valley Reservoir Slapy. Department of Physiology of Farm Animals and Zoology, University of Agriculture Prague – Suchodol, 55: 71–80.

  • Řehulka J. (2001). Chemical monitoring of three water-supply reservoirs, using fish as bioindicators. Czech. J. Anim. Sci. 46: 217–230

    Google Scholar 

  • Segner H. (1987). Response of fed and starved roach Rutilus rutilusto sublethal copper contamination. J. Fish Biol. 30: 423–437

    Article  CAS  Google Scholar 

  • Smolders A.J.P., Lock R.A.C., Hoyos R.I.M. and Roelofs J.G.M. (2003). Effects of mining activities on heavy metal concentrations in watersedimentand macroinvertebrates in different reaches of the Pilcomayo River. S Am. Arch. Environ. Contam. Toxicol. 44(3): 314–323

    Article  CAS  Google Scholar 

  • Sokal R.R. and Rohlf F.J. (1987). Biostatistics. W.H. Freeman and Company, New York

    Google Scholar 

  • Szarek-Gwiazda E. and Amirowicz A. (2003). Bioaccumulation of trace elements in roachRutilus rutilus (L.) in a eutrophicated submontane reservoir. Chemia i Inżynieria Ekologiczna 10: 445–453

    CAS  Google Scholar 

  • Tessier A., Campbell P.G.C. and Bisson M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851

    Article  CAS  Google Scholar 

  • Tessier A., Campbell P.G.C., Auclair J.C. and Bisson M. (1984). Relationship between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41: 1463–1472

    Article  CAS  Google Scholar 

  • Tessier A., Fortin D., Belzile N., Divitre R.R. and Leppard G.G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochim. Cosmochim. Acta 60: 387–404

    Article  CAS  Google Scholar 

  • Tessier A., Rapin F. and Carignan R. (1985). Trace metals in oxic lakes sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmochim. Acta 49: 183–194

    Article  CAS  Google Scholar 

  • Todorovic Z., Polic P., Djordjevic D. and Antonijevic S. (2001). Lead distribution in water and its association with sediment constituents of the “Barje” lake (Leskovac, Yugoslavia). J. Serb. Chem. Soc. 66(10): 697–708

    CAS  Google Scholar 

  • Turiekian K.K. and Wedepohl K.H. (1961). Distribution of the elements in some major units of the earth's crusts. Bull. Geol. Soc. Am. 72: 175–192

    Google Scholar 

  • Loch J.P.G. and Zwolsman J.J.G. (1998). Mobilisation of heavy metals in contaminated sediments in the river Meusethe Netherlands. Water Sci. Technol. 37: 39–46

    Article  Google Scholar 

  • Weisz M., Polyak K. and Hlavay J. (2000). Fractionation of elements in sediment samples collected in rivers and harbours at Lake Balaton and its catchment area. Microchem. J. 67(13): 207–217

    Article  CAS  Google Scholar 

  • Żurek R. 2002. Peculiarities of a sunken sulphur strip mine (Reservoir Piasecznosouthern Poland). Ecology and Eco-Technologies. In: Herman M.A.(eds) Proceedings of the Review Conference on the Scientific Cooperation between Austria and Poland. 2–8 October 1991. Vienna, Austria, pp. 333–341.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Szarek-Gwiazda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarek-Gwiazda, E., Amirowicz, A. Bioaccumulation of Trace Elements in Roach, Silver Bream, Rudd, and Perch Living in an Inundated Opencast Sulphur Mine. Aquat Ecol 40, 221–236 (2006). https://doi.org/10.1007/s10452-004-7341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-004-7341-3

Key words

Navigation