Skip to main content
Log in

Synthesis and evaluation of tannin-thiosemicarbazide-formaldehyde resin for selective adsorption of silver ions from aqueous solutions

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

To anchor chelating groups with nitrogen and sulfur atoms on tannin, a novel adsorbent (tannin-thiosemicarbazide-formaldehyde resin) was prepared through Mannich reaction by using blank wattle tannin, thiosemicarbazide and formaldehyde as raw materials. The adsorption behaviour of Ag+ from aqueous solution on the resin was evaluated via batch adsorption experiments. Fourier transform infrared spectroscopy (FT–IR) and elemental analysis were applied to verify the successful immobilization. The surface morphology, thermal stability and pore structure of the resin were also characterized. The results showed that the adsorption isotherm of Ag+ for the resin was described well by the Freundlich model. Ag+ adsorption equilibrium was achieved within 180 min, and the kinetic data were better fitted by the pseudo-second-order kinetic equation than by the pseudo-first-order and intraparticle diffusion equations. The adsorption capacity first increased and then stabilized with increasing pH (ranging from 1.0 to 7.0), and the resin exhibited high selectivity towards Ag+ in relation to Pb2+, Cd2+, Ni2+ and Ca2+. After three regeneration and reuse cycles, the adsorption capacity reached 1.68 mmol/g (84.0% of removal efficiency). Based on the experimental results and findings from various characterization techniques, the mechanism of Ag+ adsorption onto the resin could be attributed to inner-sphere complexation and chelation between Ag+ and multiple electron-rich atoms ( N, O, and S), in which S atoms played the most important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig. 10
Fig.11

Similar content being viewed by others

References

  1. Nakhjiri, A.T., et al.: Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: A critical review. Desalination 527, 115510 (2022)

    Article  Google Scholar 

  2. Biswas, F.B., et al.: Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chem. Eng. J. 407, 127225 (2021)

    Article  CAS  Google Scholar 

  3. Pilśniak-Rabiega, M., Wolska, J.: Silver(I) recovery on thiomorpholine - modified functional polymer. Physicochem. Probl. Miner. Process. 58, 156609 (2022)

    Google Scholar 

  4. Vasileiadis, S., et al.: Silver toxicity thresholds for multiple soil microbial biomarkers. Environ. Sci. Technol. 52, 8745–8755 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Eckelman, M.J., Graedel, T.E.: Silver emissions and their environmental impacts: a multilevel assessment. Environ. Sci. Technol. 41, 6283–6289 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Tortella, G.R., et al.: Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 390, 121974 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Kalčíková, G., et al.: An environmental concentration of aged microplastics with adsorbed silver signifcantly affects aquatic organisms. Water Res. 175, 115644 (2020)

    Article  PubMed  Google Scholar 

  8. Birloaga, I., Vegliò, F.: Overview on hydrometallurgical procedures for silver recovery from various wastes. J. Environ. Chem. Eng. 6, 2932–2938 (2018)

    Article  CAS  Google Scholar 

  9. Zimmermann, P., et al.: Selective recovery of silver ions from copper-contaminated effluents using electrodialysis. Desalination 572, 117108 (2024)

    Article  CAS  Google Scholar 

  10. Mitov, M., et al.: Silver recovery by microbial electrochemical snorkel and microbial fuel cell. Electrochim. Acta 408, 139941 (2022)

    Article  CAS  Google Scholar 

  11. Wang, Z., et al.: Recovery of silver from dilute effluents via electrodeposition and redox replacement. J. Electrochem. Soc. 166, 266–274 (2019)

    Article  Google Scholar 

  12. John, M., et al.: Recovery of Ag and Au from synthetic and industrial wastewater by 2-step ferritization and Lt-delafossite process via precipitation. J. Water Process. Eng. 30, 100532 (2019)

    Article  Google Scholar 

  13. Cho, S.Y., Kim, T.Y., Sun, P.P.: Recovery of silver from leachate of silicon solar cells by solvent extraction with TOPO. Sep. Purif. Technol. 215, 516–520 (2019)

    Article  CAS  Google Scholar 

  14. Virolainen, S., et al.: Ion exchange recovery of silver from concentrated base metal-chloride solutions. Hydrometallurgy 152, 100–106 (2015)

    Article  CAS  Google Scholar 

  15. Yi, M., et al.: In-situ silver recovery for biofouling mitigation with catechol-assisted nanofiltration membrane. Desalination 547, 116233 (2023)

    Article  CAS  Google Scholar 

  16. Huang, X., et al.: Fabrication of polyvinylidene fluoride and acylthiourea composite membrane and its adsorption performance and mechanism on silver ions. Sep. Purif. Technol. 315, 123675 (2023)

    Article  CAS  Google Scholar 

  17. Shao, P., et al.: Mixed-valence molybdenum oxide as a recyclable sorbent for silver removal and recovery from wastewater. Nat. Commun. 14, 1365 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abd El-Ghaffar, M.A., et al.: Extraction and separation studies of silver(I) and copper(II) from their aqueous solution using chemically modified melamine resins. Hydrometallurgy 96, 27–34 (2009)

    Article  CAS  Google Scholar 

  19. Huang, Y., et al.: Anion-synergistic adsorption enhances the selective removal of silver ions from complex wastewater by chitosan-coated magnetic silica core-shell nanoparticles. J. Clean. Prod. 339, 130777 (2022)

    Article  CAS  Google Scholar 

  20. Wang, P., et al.: Magnetic mesoporous calcium carbonate-based nanocomposites for the removal of toxic Pb(II) and Cd(II) ions from water. ACS Appl. Nano Mater. 3, 1272–1281 (2020)

    Article  CAS  Google Scholar 

  21. Fan, J., et al.: Selective adsorption and recovery of silver from acidic solution using biomass-derived sulfur-doped porous carbon. ACS Appl. Mater. Interfaces 15, 40088–40099 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. Ghomi, G.A., et al.: Biosorpion for sustainable recovery of precious metals from wastewater. J. Environ. Chem. Eng. 8, 103996 (2020)

    Article  Google Scholar 

  23. Elwakeel, K.Z., et al.: 2-Mercaptobenzimidazole derivative of chitosan for silver sorption – Contribution of magnetite incorporation and sonication effects on enhanced metal recovery. Chem. Eng. J. 403, 126265 (2021)

    Article  CAS  Google Scholar 

  24. Arbenz, A., Averous, L.: Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 17, 2626–2646 (2015)

    Article  CAS  Google Scholar 

  25. Kavitha, V.U., Kandasubramanian, B.: Tannins for wastewater treatment. SN Appl. Sci. 2, 1081 (2020)

    Article  CAS  Google Scholar 

  26. Bacelo, H.A.M., Santos, S.C.R., Botelho, C.M.S.: Tannin-based biosorbents for environmental applications – A review. Chem. Eng. J. 303, 575–587 (2016)

    Article  CAS  Google Scholar 

  27. Kim, Y.H., Nakano, Y.: Adsorption mechanism of palladium by redox within condensed-tannin gel. Water Res. 39, 1324–1330 (2005)

    Article  CAS  Google Scholar 

  28. Ogata, T., Nakano, Y.: Mechanisms of gold recoveryfrom aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Res. 39, 4281–4286 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Sun, X., et al.: Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin. J. Hazard. Mater. 186, 1058–1063 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Huang, X., Liao, X.P., Shi, B.: Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. J. Hazard. Mater. 170, 1141–1148 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. Huang, X., et al.: Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. J. Hazard. Mater. 183, 793–798 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y., et al.: Enhanced adsorption of Pb(II) ions from aqueous solution by persimmon tannin-activated carbon composites. J. Wuhan Univ. Technol. Mater. Sci. Ed. 28, 650–657 (2013)

  33. Xu, Q., et al.: Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater. 339, 91–99 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Fan, R., Min, H., Hong, X.: Plant tannin immobilized Fe3O4@SiO2 microspheres: a novel and green magnetic bio-sorbent with superior adsorption capacities for gold (III) and palladium(II). J. Hazard. Mater. 364, 780–790 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. Liu, F., et al.: Au(III) adsorption and reduction to gold particles on cost-effective tannin acid immobilized dialdehyde corn starch. Chem. Eng. J. 370, 228–236 (2019)

    Article  CAS  Google Scholar 

  36. Wang, Z., et al.: Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Mat. Sci. Eng. C-Mater. 79, 227–236 (2017)

    Article  CAS  Google Scholar 

  37. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  38. Gurung, M., et al.: Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chem. Eng. J. 228, 405–414 (2013)

    Article  CAS  Google Scholar 

  39. Gurung, M., et al.: Selective recovery of precious metals from acidic leach liquor of circuit boards of spent mobile phones using chemically modified persimmon tannin gel. Ind. Eng. Chem. Res. 51, 11901–11913 (2012)

    Article  CAS  Google Scholar 

  40. Gurung, M., et al.: N-aminoguanidine modified persimmon tannin: a new sustainable material for selective adsorption, preconcentration and recovery of precious metals from acidic chloride solution. Bioresour. Technol. 129, 108–117 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, Y.C., et al.: Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour. Technol. 100, 4083–4089 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Li, X., et al.: Chitosan modification persimmon tannin bioadsorbent for highly efficiency removal of Pb(II) from aqueous environment: the adsorption equilibrium, kinetics and thermodynamics. Environ. Technol. 40, 112–124 (2019)

    Article  PubMed  Google Scholar 

  43. Ricci, A., et al.: Application of fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 50, 407–442 (2015)

    Article  CAS  Google Scholar 

  44. Wang, F., et al.: Superior Au-adsorption performance of aminothiourea-modified waste cellulosic biomass. J. Cent. South Univ. 25, 2992–3003 (2018)

    Article  CAS  Google Scholar 

  45. Liu, P., et al.: Adsorption of silver ion from the aqueous solution using a polyvinylidene fluoride functional membrane bearing thiourea groups. J. Water Process Eng. 34, 101184 (2020)

    Article  Google Scholar 

  46. Lin, G., et al.: Synthesis and evaluation of thiosemicarbazide functionalized corn bract for selective and efficient adsorption of Au(III) from aqueous solutions. J. Mol. Liq. 258, 235–243 (2018)

    Article  CAS  Google Scholar 

  47. Zhou, L., Liu, J., Liu, Z.: Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J. Hazard. Mater. 172, 439–446 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Xiong, Y., et al.: Selective recovery of Ag(I) coordination anion from simulate nickel electrolyte using corn stalk based adsorbent modified by ammonia–thiosemicarbazide. J. Hazard. Mater. 301, 277–285 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Deng, S., et al.: Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II). J. Hazard. Mater. 307, 64–72 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Z., et al.: Synthesis of silica supported thiosemicarbazide for Cu(II) and Zn(II) adsorption from ethanol: A comparison with aqueous solution. Fuel 286, 119287 (2021)

    Article  CAS  Google Scholar 

  51. Wang, Z.H., et al.: Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material. J. Nanopart. Res. 19, 77–86 (2017)

    Article  Google Scholar 

  52. Liu, D., et al.: Organic-inorganic hybrid mesoporous titanium silica material as bi-functional heterogeneous catalyst for the CO2 cycloaddition. Fuel 244, 196–206 (2019)

    Article  CAS  Google Scholar 

  53. Dong, Z., et al.: Performance and mechanism of selective adsorption of silver to L-cysteine functionalized cellulose microsphere. Cellulose 27, 3249–3261 (2020)

    Article  CAS  Google Scholar 

  54. El-Ghaffar, M.A.A., Abdel-Wahab, Z.H., Elwakeel, K.Z.: Extraction and separation studies of silver(I) and copper(II) from their aqueous solution using chemically modified melamine resins. Hydrometallurgy 96, 27–34 (2009)

    Article  Google Scholar 

  55. Du, J.F., et al.: Facile fabrication of sodium styrene sulfonate-grafted ethylene-vinyl alcohol copolymer as adsorbent for ammonium removal from aqueous solution. Environ. Sci. Pollut. R. 25, 27235–27244 (2018)

    Article  CAS  Google Scholar 

  56. Elshehy, E.A., et al.: Selective recovery of silver(I) ions from E-waste using cubically multithiolated cage mesoporous monoliths. Eur. J. Inorg. Chem. 2017, 4823–4833 (2017)

    Article  CAS  Google Scholar 

  57. Condomitti, U., et al.: Silver recovery using electrochemically active magnetite coated carbon particles. Hydrometallurgy 147, 241–245 (2014)

    Article  Google Scholar 

  58. Abd El-Ghaffar, M.A., et al.: Adsorption of silver(I) on synthetic chelating polymer derived from 3-amino-1,2,4-triazole-5-thiol and glutaraldehyde. Chem. Eng. J. 151, 30–38 (2009)

    Article  CAS  Google Scholar 

  59. Zhang, M., et al.: Ion-imprinted chitosan gel beads for selective adsorption of Ag+ from aqueous solutions. Carbohydr. Polym. 130, 206–212 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. Tran, H.N., et al.: Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. Environ. Chem. Eng. 4(3), 2671–3268 (2016)

    Article  CAS  Google Scholar 

  61. Goldberg, S.: Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J. Colloid Interf. Sci. 285, 509–517 (2005)

    Article  CAS  Google Scholar 

  62. Al-Degs, Y.S., et al.: Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77, 16–23 (2008)

    Article  CAS  Google Scholar 

  63. An, F.Q., et al.: Selective adsorption of AuCl4- on chemically modified D301 resin with containing N/S functional polymer. J. Environ. Chem. Eng. 5, 10–15 (2017)

    Article  CAS  Google Scholar 

  64. Villalobos, L.F., Yapici, T., Peinemann, K.V.: Poly-thiosemicarbazide membrane for gold recovery. Sep. Purif. Technol. 136, 94–104 (2014)

    Article  CAS  Google Scholar 

  65. Fu, L., et al.: Selective adsorption of Ag+ by silica nanoparticles modified with 3-amino-5-mercapto-1,2,4-triazole from aqueous solutions. J. Mol. Liq. 241, 292–300 (2017)

    Article  CAS  Google Scholar 

  66. Rahman, M.M., et al.: Optimization, kinetic and thermodynamic studies for removal of Brilliant Red (X-3B) using tannin gel. J. Environ. Chem. Eng. 2(1), 76–83 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Support Program of Sichuan Province (No. 2019YJ0399).

Funding

This work was supported by the Science and Technology Support Program of Sichuan Province (No. 2019YJ0399).

Author information

Authors and Affiliations

Authors

Contributions

X.B. Sun developed the concept, designed the experiments and drafted the manuscript. S.Y. Yin performed the experiments and acquired the data. Y.H. You reviewed the manuscript.

Corresponding author

Correspondence to Xubing Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yin, S. & You, Y. Synthesis and evaluation of tannin-thiosemicarbazide-formaldehyde resin for selective adsorption of silver ions from aqueous solutions. Adsorption (2024). https://doi.org/10.1007/s10450-024-00492-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00492-5

Keywords

Navigation