Skip to main content
Log in

Prospective Life Cycle Assessment Prospective (LCA) of Activated Carbon Production, Derived from Banana Peel Waste for Methylene Blue Removal

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Activated carbon (AC) has recently gained increasing attention for removing various contaminants from water. AC obtained by agroindustrial waste is considered one of the essential adsorbent materials, which plays a vital role in processes of adsorption in water purification and wastewater treatment. Given the extensive use of this material, it is essential to understand its entire production chain and environmental impact. In this work, banana peel waste (BPF) was submitted at NaOH activation followed by pyrolysis at 600 °C to produce activated biochar (BFAC), aiming to remove methylene blue (MB) from wastewater. BFAC was characterized by TGA, XRD, SEM, BET, and FTIR techniques. The influence of dye concentration (10, 25, 50, 100, 250, and 500 mg L− 1) and zero point charge (ZPC) were investigated. Besides, a Life Cycle Assessment (LCA) was carried out to assess the environmental impacts of the developed process. BFAC presented a well-developed pore structure with a predominance of mesopores and macropores, which directly influenced the MB removal capacity. The highest efficiency for dye removal was 62% after 10 min to an initial concentration of 50 mg.L-1. The adsorption isotherms were well defined by Langmuir, Freundlich, and Temkin isotherm models. The Langmuir model represented the best fit of experimental data for BFAC with a maximum adsorption capacity of 49.5 mg g− 1. Regarding LCA, a prospective approach at the early stage of development was conducted to orient the transition from laboratory to industrial scale, aiming at providing a competitive CO2-based technological route. The scenarios proposed suggest that this route is promising either from the life cycle assessment or the circular economy perspective. Thus, BFAC can be considered an adsorbent with great practical application for post-treatment wastewater effluents to remove contaminants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Source: Sankey diagram adapted from the product system (BFAC production) analysis provided by openLCA software

Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Maia, L.S., da Silva, A.I.C., Carneiro, E.S., et al.: Activated Carbon from Palm Fibres used as an adsorbent for Methylene Blue removal. J. Polym. Environ. (2020). https://doi.org/10.1007/s10924-020-01951-0

    Article  Google Scholar 

  2. Maia, L.S., Duizit, L.D., Pinhatio, F.R., Mulinari, D.R.: Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal. Carbon Lett. (2021). https://doi.org/10.1007/s42823-021-00226-5

    Article  Google Scholar 

  3. da Silva, A.I.C., Paranha, G., Maia, L.S., Mulinari, D.R.: Development of activated Carbon from Pineapple Crown Wastes and its potential use for removal of Methylene Blue. J. Nat. Fibers. 1–16 (2021). https://doi.org/10.1080/15440478.2021.1875365

  4. Mallakpour, S., Tabesh, F., Hussain, C.M.: Water decontamination using CaCO3 nanostructure and its nanocomposites: Current advances. Polym. Bull. 80, 7201–7219 (2023). https://doi.org/10.1007/s00289-022-04431-8

    Article  CAS  Google Scholar 

  5. Gonzaga de Oliveira, A., Barros, A.D., Lucena, L.C., de FL, et al.: Evaluation of calcined textile sludge as a stabilizing material for highway soil. J. Traffic Transp. Eng. (English Edition). 7, 688–699 (2020). https://doi.org/10.1016/j.jtte.2019.02.004

    Article  Google Scholar 

  6. Mendes, C.R., Dilarri, G., Bidoia, E.D., Montagnolli, R.N.: Adsorption in jar-test system: A study of the physico-chemical interactions of the chitosan biopolymer with the textile dye do 2gl. Revista Materia. 25, 1–11 (2020). https://doi.org/10.1590/S1517-707620200004.1143

    Article  Google Scholar 

  7. Sridhar, A., Ponnuchamy, M., Kapoor, A., Prabhakar, S.: Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. J. Hazard. Mater. 424 (2022). https://doi.org/10.1016/j.jhazmat.2021.127432

  8. Moradihamedani, P.: Recent advances in dye removal from wastewater by membrane technology: A review. Polym. Bull. 79, 2603–2631 (2022)

    Article  CAS  Google Scholar 

  9. Zhou, H., Zhu, H., Xue, F., et al.: Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism. Chem. Eng. J. 385, 123879 (2020). https://doi.org/10.1016/j.cej.2019.123879

    Article  CAS  Google Scholar 

  10. Akkari, I., Graba, Z., Pazos, M., et al.: Recycling waste by manufacturing biomaterial for environmental engineering: Application to dye removal. Biocatal. Agric. Biotechnol. 50, 102709 (2023). https://doi.org/10.1016/j.bcab.2023.102709

    Article  CAS  Google Scholar 

  11. Guimarães, T., Luciano, V.A., Silva, M.S.V., et al.: Biochar-iron composites: An efficient material for dyes removal. Environ. Nanatechnol. Monit. Manage. 17 (2022). https://doi.org/10.1016/j.enmm.2022.100645

  12. Anushree, C., Philip, J.: Efficient removal of methylene blue dye using cellulose capped Fe 3 O 4 nanofluids prepared using oxidation-precipitation method. Colloids Surf., a. 567, 193–204 (2019). https://doi.org/10.1016/j.colsurfa.2019.01.057

    Article  CAS  Google Scholar 

  13. Bayat, M., Javanbakht, V., Esmaili, J.: Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. Int. J. Biol. Macromol. 116, 607–619 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  14. Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D.: Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process. Eng. 49 (2022). https://doi.org/10.1016/j.jwpe.2022.102952

  15. Nasar, A., Mashkoor, F.: Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ. Sci. Pollut. Res. 26, 5333–5356 (2019)

    Article  CAS  Google Scholar 

  16. Piaskowski, K., Świderska-Dąbrowska, R., Zarzycki, P.K.: Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int. 101, 1371–1384 (2018). https://doi.org/10.5740/jaoacint.18-0051

    Article  CAS  PubMed  Google Scholar 

  17. Yang, L., Li, D., Zhang, L., et al.: On the utilization of waste fried oil as flotation collector to remove carbon from coal fly ash. Waste Manage. 113, 62–69 (2020). https://doi.org/10.1016/j.wasman.2020.05.045

    Article  CAS  Google Scholar 

  18. Mahto, A., Mishra, S.: The removal of textile industrial Dye-RB-19 using guar gum-based adsorbent with thermodynamic and kinetic evaluation parameters. Polym. Bull. 79, 3353–3378 (2022). https://doi.org/10.1007/s00289-021-03663-4

    Article  CAS  Google Scholar 

  19. Alnasrawy, S.T.: Adsorption Efficiency, Isotherms, and kinetics for cationic dye removal using Biowaste Adsorbent. J. Hazard. Toxic. Radioactive Waste. (2023). https://doi.org/10.1061/(asce)hz.2153-5515.0000735 27:

    Article  Google Scholar 

  20. Araújo-Chaves, J.C., Bellini, B., Santos, H.F., et al.: Double environmental benefit by the removal of photosensitizing dyes from the water using particulate solid waste. Revista Materia. 24 (2019). https://doi.org/10.1590/s1517-707620190003.0715

  21. Wang, G., Chen, Y., Xu, G., Pei, Y.: Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Int. J. Biol. Macromol. 129, 198–206 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.039

    Article  CAS  PubMed  Google Scholar 

  22. da Silva, A.I.C., Paranha, G., Maia, L.S., Mulinari, D.R.: Development of activated Carbon from Pineapple Crown Wastes and its potential use for removal of Methylene Blue. J. Nat. Fibers. (2021). https://doi.org/10.1080/15440478.2021.1875365

    Article  Google Scholar 

  23. Zhu, L., Zhu, P., You, L., Li, S.: Bamboo shoot skin: Turning waste to a valuable adsorbent for the removal of cationic dye from aqueous solution. Clean Technol. Environ. Policy. 21, 81–92 (2019). https://doi.org/10.1007/s10098-018-1617-0

    Article  CAS  Google Scholar 

  24. Yunus, Z.M., Othman, N., Al-Gheethi, A., et al.: Adsorption of heavy metals from mining effluents using honeydew peels activated carbon; isotherm, kinetic and column studies. J. Dispers. Sci. Technol. 42, 715–729 (2021). https://doi.org/10.1080/01932691.2019.1709493

    Article  CAS  Google Scholar 

  25. Akpomie, K.G., Conradie, J.: Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ. Chem. Lett. 18, 1085–1112 (2020). https://doi.org/10.1007/s10311-020-00995-x

    Article  CAS  Google Scholar 

  26. Maia, L.S., da Silva, A.I.C., Carneiro, E.S., et al.: Activated Carbon from Palm Fibres used as an adsorbent for Methylene Blue removal. J. Polym. Environ. 29, 1162–1175 (2021). https://doi.org/10.1007/s10924-020-01951-0

    Article  CAS  Google Scholar 

  27. Bhomick, P.C., Supong, A., Baruah, M., et al.: Pine Cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies. Sustainable Chem. Pharm. 10, 41–49 (2018). https://doi.org/10.1016/j.scp.2018.09.001

    Article  Google Scholar 

  28. Danish, M., Ahmad, T., Majeed, S., et al.: Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies. Bioresource Technol. Rep. 3, 127–137 (2018). https://doi.org/10.1016/j.biteb.2018.07.007

    Article  Google Scholar 

  29. Carneiro, M.T., Barros, A.Z.B., Morais, A.I.S., et al.: Application of Water Hyacinth Biomass (Eichhornia crassipes) as an adsorbent for Methylene Blue Dye from Aqueous Medium: Kinetic and isothermal study. Polymers. 14 (2022). https://doi.org/10.3390/polym14132732

  30. Akkari, I., Graba, Z., Pazos, M., et al.: NaOH-activated Pomegranate Peel Hydrochar: Preparation, characterization and Improved Acebutolol Adsorption. Water Air Soil. Pollut. 234, 705 (2023). https://doi.org/10.1007/s11270-023-06723-9

    Article  CAS  Google Scholar 

  31. Graba, Z., Akkari, I., Bezzi, N., Kaci, M.M.: Valorization of olive–pomace as a green sorbent to remove Basic Red 46 (BR46) dye from aqueous solution. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03639-y

    Article  Google Scholar 

  32. Subash, M., Perumalsamy, M.: Green degumming of banana pseudostem fibers for yarn manufacturing in textile industries. Biomass Convers. Biorefinery. (2022). https://doi.org/10.1007/s13399-022-02850-1

    Article  Google Scholar 

  33. Olaoye, R., Afolayan, O., Mustapha, O., Adeleke, H.: The efficacy of Banana Peel activated Carbon in the removal of cyanide and selected metals from Cassava Processing Wastewater. Adv. Res. 16, 1–12 (2018). https://doi.org/10.9734/air/2018/43070

    Article  Google Scholar 

  34. Deshmukh, P.D., Khadse, G.K., Shinde, V.M., Labhasetwar, P.: Cadmium removal from Aqueous solutions using dried Banana peels as an adsorbent: Kinetics and equilibrium modeling. J. Bioremediat. Biodegradation. 08 (2017). https://doi.org/10.4172/2155-6199.1000395

  35. Ramutshatsha-Makhwedzha, D., Mbaya, R., Mavhungu, M.L.: Application of activated Carbon Banana Peel coated with Al2O3-Chitosan for the Adsorptive removal of lead and cadmium from Wastewater. Materials. 15 (2022). https://doi.org/10.3390/ma15030860

  36. Mohammadifard, A., Allouss, D., Vosoughi, M., et al.: Synthesis of magnetic Fe3O4/activated carbon prepared from banana peel (BPAC@Fe3O4) and salvia seed (SSAC@Fe3O4) and applications in the adsorption of Basic Blue 41 textile dye from aqueous solutions. Appl. Water Sci. 12 (2022). https://doi.org/10.1007/s13201-022-01622-6

  37. Bibaj, E., Lysigaki, K., Nolan, J.W., et al.: Activated carbons from banana peels for the removal of nickel ions. Int. J. Environ. Sci. Technol. 16, 667–680 (2019). https://doi.org/10.1007/s13762-018-1676-0

    Article  CAS  Google Scholar 

  38. Singh, S., Kumar, A., Gupta, H.: Activated banana peel carbon: A potential adsorbent for rhodamine B decontamination from aqueous system. Appl. Water Sci. 10 (2020). https://doi.org/10.1007/s13201-020-01274-4

  39. Dawodu, F.A., Abonyi, C.J., Akpomie, K.G.: Feldspar-banana peel composite adsorbent for efficient crude oil removal from solution. Appl. Water Sci. (2021). https://doi.org/10.1007/s13201-020-01335-8 11:

    Article  Google Scholar 

  40. Ramutshatsha-Makhwedzha, D., Mavhungu, A., Moropeng, M.L., Mbaya, R.: Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon. 8, e09930 (2022). https://doi.org/10.1016/j.heliyon.2022.e09930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Munagapati, V.S., Yarramuthi, V., Kim, Y., et al.: Removal of anionic dyes (reactive black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol. Environ. Saf. 148, 601–607 (2018). https://doi.org/10.1016/j.ecoenv.2017.10.075

    Article  CAS  PubMed  Google Scholar 

  42. Mondal, N.K., Kar, S.: Potentiality of banana peel for removal of Congo red dye from aqueous solution: Isotherm, kinetics and thermodynamics studies. Appl. Water Sci. 8 (2018). https://doi.org/10.1007/s13201-018-0811-x

  43. Singh, R., Datta, B.: Banana Peel Powder as an effective multilayer adsorbent of ammonium ions. Ind. Eng. Chem. Res. 61, 18464–18474 (2022). https://doi.org/10.1021/acs.iecr.2c03052

    Article  CAS  Google Scholar 

  44. Devarajan, Y., Lakshmaiya, N.: Effective utilization of waste banana peel extracts for generating activated carbon-based adsorbent for emission reduction. Biomass Convers. Biorefinery. (2022). https://doi.org/10.1007/s13399-022-03470-5

    Article  Google Scholar 

  45. Jha, V.K., Maharjan, J.: Activated carbon obtained from banana peels for the removal of AS (III) from water. Sci. World. 15, 145–157 (2022). https://doi.org/10.3126/sw.v15i15.45665

    Article  Google Scholar 

  46. Anita, S., Hanifah, T.A., Kartika, G.F., Yanti, P.H.: Methylene Blue and Methyl Orange Dyes Removal using Low-Cost Composite of Banana Peel-TiO2Adsorbent. In: Journal of Physics: Conference Series. IOP Publishing Ltd (2021)

  47. De Carvalho, H.P., Huang, J., Zhao, M., et al.: Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. Alexandria Eng. J. 54, 777–786 (2015). https://doi.org/10.1016/j.aej.2015.04.003

    Article  Google Scholar 

  48. Maia, L.S., Duizit, L.D., Pinhatio, F.R., Mulinari, D.R.: Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal. Carbon Lett. 31, 749–762 (2021). https://doi.org/10.1007/s42823-021-00226-5

    Article  Google Scholar 

  49. Pathania, D., Sharma, S., Singh, P.: Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 10, S1445–S1451 (2017). https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  50. Sharma, A., Siddiqui, Z.M., Dhar, S., et al.: Adsorptive removal of Congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: Isotherm, kinetics and thermodynamics. Sep. Sci. Technol. (Philadelphia). 54, 916–929 (2019). https://doi.org/10.1080/01496395.2018.1524908

    Article  CAS  Google Scholar 

  51. Adebayo, M.A., Adebomi, J.I., Abe, T.O., Areo, F.I.: Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloids Interface Sci. Commun. 38, 100311 (2020). https://doi.org/10.1016/j.colcom.2020.100311

    Article  CAS  Google Scholar 

  52. Danehpash, S., Farshchi, P., Roayaei, E., et al.: Investigation the advantages of some biocompatible adsorbent materials in removal of environmental pollutants in aqueous solutions. Ukrainian J. Ecol. 8, 199–202 (2018)

    Google Scholar 

  53. Somsesta, N., Sricharoenchaikul, V., Aht-Ong, D.: Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Mater. Chem. Phys. 240, 122221 (2020). https://doi.org/10.1016/j.matchemphys.2019.122221

    Article  CAS  Google Scholar 

  54. Hock, P.E., Faizal, A.N.M., Sirajo, L., Zaini, M.A.A.: Insight into Kinetics, Equilibrium, and Thermodynamics of Malachite Green Adsorption onto Banana peel Adsorbents. Biomass Conversion and Biorefinery (2023)

  55. Martínez, R.J., Vela-Carrillo, A.Z., Godínez, L.A., et al.: Competitive adsorption of anionic and cationic molecules on three activated carbons derived from agroindustrial waste. Biomass Bioenerg. 168 (2023). https://doi.org/10.1016/j.biombioe.2022.106660

  56. Bakar, N.A., Othman, N., Yunus, Z.M., et al.: Nipah (Musa Acuminata Balbisiana) banana peel as a lignocellulosic precursor for activated carbon: Characterization study after carbonization process with phosphoric acid impregnated activated carbon. Biomass Convers. Biorefinery. (2021). https://doi.org/10.1007/s13399-021-01937-5

    Article  Google Scholar 

  57. Prastuti, O.P., Septiani, E.L., Kurniati, Y., et al.: Banana peel activated carbon in removal of dyes and metals ion in textile industrial waste. In: Materials Science Forum, pp. 204–209. Trans Tech Publications Ltd (2019)

  58. Lu, Y., Li, S.: Preparation of hierarchically interconnected porous Banana Peel activated Carbon for Methylene Blue Adsorption. J. Wuhan Univ. Technol. Mater. Sci. Ed. 34, 472–480 (2019). https://doi.org/10.1007/s11595-019-2076-0

    Article  CAS  Google Scholar 

  59. Diémé, M.M., Hervy, M., Diop, S.N., et al.: Sustainable Conversion of Agriculture and Food Waste into activated carbons devoted to fluoride removal from drinking Water in Senegal. Int. J. Chem. 8, 8 (2015). https://doi.org/10.5539/ijc.v8n1p8

    Article  CAS  Google Scholar 

  60. Balmuk, G., Videgain, M., Manyà, J.J., et al.: Effects of pyrolysis temperature and pressure on agronomic properties of biochar. J. Anal. Appl. Pyrol. 169 (2023). https://doi.org/10.1016/j.jaap.2023.105858

  61. Tahir, M.H., Zhao, Z., Ren, J., et al.: Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenerg. 122, 193–201 (2019). https://doi.org/10.1016/j.biombioe.2019.01.009

    Article  CAS  Google Scholar 

  62. Prasad, S., Singh, A., Korres, N.E., et al.: Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 303, 122964 (2020). https://doi.org/10.1016/j.biortech.2020.122964

    Article  CAS  PubMed  Google Scholar 

  63. Te, W.Z., Muhanin, K.N.M., Chu, Y.M., et al.: Optimization of pyrolysis parameters for production of Biochar from Banana peels: Evaluation of Biochar Application on the growth of Ipomoea aquatica. Front. Energy Res. 8, 1–16 (2021). https://doi.org/10.3389/fenrg.2020.637846

    Article  Google Scholar 

  64. Yu, Z., Ma, H., Liu, X., et al.: Review in life cycle assessment of biomass conversion through pyrolysis-issues and recommendations. Green. Chem. Eng. 3, 304–312 (2022). https://doi.org/10.1016/j.gce.2022.08.002

    Article  Google Scholar 

  65. Gahane, D., Biswal, D., Mandavgane, S.A.: Life Cycle Assessment of Biomass Pyrolysis. Bioenergy Res. 15, 1387–1406 (2022). https://doi.org/10.1007/s12155-022-10390-9

    Article  CAS  Google Scholar 

  66. Obayomi, K.S., Lau, S.Y., Zahir, A., et al.: Removing methylene blue from water: A study of sorption effectiveness onto nanoparticles-doped activated carbon. Chemosphere. 313, 137533 (2023). https://doi.org/10.1016/j.chemosphere.2022.137533

    Article  CAS  PubMed  Google Scholar 

  67. EPE - Empresa de Pesquisa Energética: Anuário Estatístico De Energia Elétrica Ano Base 2020, p. 255. Empresa De Pesquisa Energética (EPE (2021)

  68. Martins, L., Zanini, N., Pinheiro, L., Mulinari, D.: Valorization of Banana Peel Waste used as Filler in Castor Oil Polyurethane Foam for Vegetal Oil Sorption. J. Nat. Fibers. 00, 1–12 (2021). https://doi.org/10.1080/15440478.2021.1958414

    Article  CAS  Google Scholar 

  69. Nipa, S.T., Shefa, N.R., Parvin, S., et al.: Adsorption of methylene blue on papaya bark fiber: Equilibrium, isotherm and kinetic perspectives. Results Eng. 17, 100857 (2023). https://doi.org/10.1016/j.rineng.2022.100857

    Article  CAS  Google Scholar 

  70. Sultana, A.I., Chambers, C., Ahmed, M.M.N., et al.: Multifunctional Loblolly Pine-Derived Superactivated Hydrochar: Effect of Hydrothermal Carbonization on Hydrogen and Electron Storage with Carbon Dioxide and Dye Removal. Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12203575

  71. Khuong, D.A., Kieu, T.T., Nakaoka, Y., et al.: The investigation of activated carbon by K2CO3 activation: Micropores- and macropores-dominated structure. Chemosphere. 299, 134365 (2022). https://doi.org/10.1016/j.chemosphere.2022.134365

    Article  CAS  PubMed  Google Scholar 

  72. Alaa El-Din, G., Amer, A.A., Malsh, G., Hussein, M.: Study on the use of banana peels for oil spill removal. Alexandria Eng. J. 57, 2061–2068 (2018). https://doi.org/10.1016/j.aej.2017.05.020

    Article  Google Scholar 

  73. Zhang, Y., Song, X., Xu, Y., et al.: Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 210, 366–375 (2019). https://doi.org/10.1016/j.jclepro.2018.11.041

    Article  CAS  Google Scholar 

  74. Den, W., Sharma, V.K., Lee, M., et al.: Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value added chemicals. Front. Chem. 6, 1–23 (2018). https://doi.org/10.3389/fchem.2018.00141

    Article  CAS  Google Scholar 

  75. Abdullah, N., Mohd, R., Syairah, N., et al.: Heliyon Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon. 9, e12940 (2023). https://doi.org/10.1016/j.heliyon.2023.e12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hussain, O.A., Hathout, A.S., Abdel-mobdy, Y.E., et al.: Preparation and characterization of activated carbon from agricultural wastes and their ability to remove chlorpyrifos from water. Toxicol. Rep. 10, 146–154 (2023). https://doi.org/10.1016/j.toxrep.2023.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun, Y., tao, Chen, J., dong, Wei, Z., et al.: hua, Copper ion removal from aqueous media using banana peel biochar/Fe3O4/branched polyethyleneimine. Colloids and Surfaces A: Physicochemical and Engineering Aspects 658:130736. (2023). https://doi.org/10.1016/j.colsurfa.2022.130736

  78. Elseify, L.A., Midani, M., El-Badawy, A.A., et al.: Comparative study of long date palm (Phoenix dactylifera L.) midrib and spadix fibers with other commercial leaf fibers. Cellulose. 30, 1927–1942 (2023). https://doi.org/10.1007/s10570-022-04972-1

    Article  CAS  Google Scholar 

  79. Díez, D., Urueña, A., Piñero, R., et al.: And Lignin Content in Di Ff erent types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model. Processes. 8, 1–21 (2020)

    Article  Google Scholar 

  80. Hu, J., Zhu, J., Ge, S., et al.: Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil – water separation. Surf. Coat. Technol. 385, 125361 (2020). https://doi.org/10.1016/j.surfcoat.2020.125361

    Article  CAS  Google Scholar 

  81. Pereira, P.H.F., Ornaghi, H.L., Arantes, V., Cioffi, M.O.H.: Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr. Res. 499, 108227 (2021). https://doi.org/10.1016/j.carres.2020.108227

    Article  CAS  PubMed  Google Scholar 

  82. Serna-Jiménez, J.A., Luna-Lama, F., Caballero, Á., et al.: Valorisation of banana peel waste as a precursor material for different renewable energy systems. Biomass Bioenerg. 155 (2021). https://doi.org/10.1016/j.biombioe.2021.106279

  83. Pathak, P.D., Mandavgane, S.A.: Preparation and characterization of raw and carbon from banana peel by microwave activation: Application in citric acid adsorption. J. Environ. Chem. Eng. 3, 2435–2447 (2015). https://doi.org/10.1016/j.jece.2015.08.023

    Article  CAS  Google Scholar 

  84. Oh, W., Da, Veksha, A., Chen, X., et al.: Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation. Chem. Eng. J. 374, 947–957 (2019). https://doi.org/10.1016/j.cej.2019.06.001

    Article  CAS  Google Scholar 

  85. Jawad, A.H., Rashid, R.A., Ishak, M.A.M., Ismail, K.: Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels. J. Taibah Univ. Sci. 12, 809–819 (2018). https://doi.org/10.1080/16583655.2018.1519893

    Article  Google Scholar 

  86. Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., et al.: Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf. 147, 64–71 (2018). https://doi.org/10.1016/j.ecoenv.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  87. Van, H.T., Nguyen, T.M.P., Thao, V.T., et al.: Applying activated Carbon Derived from Coconut Shell loaded by silver nanoparticles to Remove Methylene Blue in Aqueous Solution. Water Air Soil Pollut. 229 (2018). https://doi.org/10.1007/s11270-018-4043-3

  88. Alene, A.N., Abate, G.Y., Habte, A.T., Getahun, D.M.: Utilization of a novel low-cost gibto (Lupinus albus) seed peel waste for the removal of malachite green dye: Equilibrium, kinetic, and thermodynamic studies. J. Chem. 2021. (2021). https://doi.org/10.1155/2021/6618510

    Article  Google Scholar 

  89. Joshiba, G.J., Kumar, P.S., Rangasamy, G., et al.: Iron doped activated carbon for effective removal of tartrazine and methylene blue dye from the aquatic systems: Kinetics, isotherms, thermodynamics and desorption studies. Environ. Res. 215, 114317 (2022). https://doi.org/10.1016/j.envres.2022.114317

    Article  CAS  PubMed  Google Scholar 

  90. Shahib, I.I., Ifthikar, J., Oyekunle, D.T., et al.: Influences of chemical treatment on sludge derived biochar; physicochemical properties and potential sorption mechanisms of lead (II) and methylene blue. J. Environ. Chem. Eng. 10, 107725 (2022). https://doi.org/10.1016/j.jece.2022.107725

    Article  CAS  Google Scholar 

  91. Alsulaili, A.D., Refaie, A.A., Garcia, H.A.: Adsorption capacity of activated carbon derived from date seeds: Characterization, optimization, kinetic and equilibrium studies. Chemosphere. 313, 137554 (2023). https://doi.org/10.1016/j.chemosphere.2022.137554

    Article  CAS  PubMed  Google Scholar 

  92. Ofgea, N.M., Tura, A.M., Fanta, G.M.: Activated carbon from H3PO4 -activated Moringa Stenopetale seed husk for removal of methylene blue: Optimization using the response surface method (RSM). Environ. Sustain. Indic. 16, 100214 (2022). https://doi.org/10.1016/j.indic.2022.100214

    Article  Google Scholar 

  93. Shah, I., Adnan, R., Wan Ngah, W.S., et al.: A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dye. Bioresour. Technol. 160, 52–56 (2014). https://doi.org/10.1016/j.biortech.2014.02.047

    Article  CAS  PubMed  Google Scholar 

  94. Bakhta, S., Sadaoui, Z., Lassi, U., et al.: Performances of metals modified activated carbons for fluoride removal from aqueous solutions. Chem. Phys. Lett. 754, 137705 (2020). https://doi.org/10.1016/j.cplett.2020.137705

    Article  CAS  Google Scholar 

  95. Can Erkey: 4 - Thermodynamics and Dynamics of Adsorption of Metal Complexes on Surfaces from Supercritical Solutions. (2011)

  96. Radoor, S., Karayil, J., Jayakumar, A., et al.: Ecofriendly and low-cost bio adsorbent for efficient removal of methylene blue from aqueous solution. Sci. Rep. 12, 20580 (2022). https://doi.org/10.1038/s41598-022-22936-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mousavi, S.A., Mahmoudi, A., Amiri, S., et al.: Methylene blue removal using grape leaves waste: Optimization and modeling. Appl. Water Sci. 12, 112 (2022). https://doi.org/10.1007/s13201-022-01648-w

    Article  CAS  Google Scholar 

  98. Sen, T.K.: Adsorptive removal of Dye (Methylene Blue) Organic Pollutant from Water by Pine Tree Leaf Biomass Adsorbent. Processes. 11, 1877 (2023). https://doi.org/10.3390/pr11071877

    Article  CAS  Google Scholar 

  99. Deka, J., Das, H., Singh, A., et al.: Methylene blue removal using raw and modified biomass Plumeria alba (white frangipani) in batch mode: Isotherm, kinetics, and thermodynamic studies. Environ. Monit. Assess. 195, 26 (2023). https://doi.org/10.1007/s10661-022-10597-5

    Article  CAS  Google Scholar 

  100. Vakili, A., Zinatizadeh, A.A., Rahimi, Z., et al.: The impact of activation temperature and time on the characteristics and performance of agricultural waste-based activated carbons for removing dye and residual COD from wastewater. J. Clean. Prod. 382, 134899 (2022). https://doi.org/10.1016/j.jclepro.2022.134899

    Article  CAS  Google Scholar 

  101. Barthel, M., James, K., Guinness, J., et al.: Hotspots analysis: Mapping of existing methodologies, tools and guidance and initial recommendations for the development of global guidance (26th September 2014 - version 5.2 for comments). UNEP-SETAC Life Cycle Initiative - Flagship Project 3a 2014: (2014)

  102. Carvalho, J., Nascimento, L., Soares, M., et al.: Circular Economy Perspective (2022)

  103. Alhashimi, H.A., Aktas, C.B.: Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resour. Conserv. Recycl. 118, 13–26 (2017). https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  104. Silva-alvarado, P.M., Orozco-crespo, E., Verduga-alcívar, D.A., Diéguez-santana, K.: Prospective of the circular economy in a banana agri-food chain. 17:34–52 (2023)

Download references

Acknowledgements

This research was funded by Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ (E-26/210.092/2022 and E-26/210.450/2021). The authors too thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (2020/13703–3, 2021/08296-2, 2013/07276-1, 2021/14714-1 and 2023/14598-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (403934/2021–4, 308053/2021-4, and 309614/2021-0; INCT-INFO, Multi-user Experimental Centers (CEM-UFABC), and REVALORES Strategic Unit.

Author information

Authors and Affiliations

Authors

Contributions

P.H.F.P.: Methodology, Writing –original. L.S.M.: Methodology, Formal analysis, Investigation, Writing – original draft, Writing –original. A.I.C. d.S.: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft. B.A.R.S.: Writing –original. F.R.P.: Writing –original. S.A.d.O.: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Visualization, Writing –original. D.S.R.: Supervision, Writing –review & editing. D.R.M. Supervision, Writing –review & editing.

Corresponding author

Correspondence to Daniella R. Mulinari.

Ethics declarations

Ethical approval

Not applicable.

Conflicting interest

The authors state that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, P.H.F., Maia, L.S., da Silva, A.I.C. et al. Prospective Life Cycle Assessment Prospective (LCA) of Activated Carbon Production, Derived from Banana Peel Waste for Methylene Blue Removal. Adsorption (2024). https://doi.org/10.1007/s10450-024-00485-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00485-4

Keywords

Navigation