Skip to main content
Log in

Synthesis, characterization and application of xanthated Diospyros kaki (persimmon) leaves for the treatment of chemical and biological contaminants in aqueous solutions

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this research, a one-step xanthation process was used to synthesize biosorbents from persimmon leaves (Diospyros kaki). The resulting biosorbents, referred to as MPM, exhibited high sorption capacities for Hexavalent chromium and Cd(II) at different pH values. Specifically, at pH 3, the Langmuir maximum adsorption capacity for Cr(VI)-MPM was determined to be 710 mg/g, while at pH 7, it was 622 mg/g for Cd(II)-MPM systems. The adsorption kinetics of both the metal ions followed the pseudo-2nd-order model, with R2 values close to 1 (0.99). Through FT-IR and XPS studies, it was determined that ion exchange, surface complexation, and chelation were the primary mechanisms responsible for removing the analytes from water using MPM as sorbent. The presence of the -CS2-Na group in MPM played a crucial role in these removal mechanisms. Additionally, MPM displayed notable antibacterial efficacy against S. aureus and E. coli. Considering its rapid kinetics, wide pH range applicability, impressive sorption capacity, recyclability, and effective antibacterial properties, MPM proves to be a highly suitable adsorbent for removing Hexavalent chromium and Cd(II) from industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided upon reasonable request.

References

  1. Ahmadi, H., Hafiz, S.S., Sharifi, H., Rene, N.N., Habibi, S.S., Hussain, S.: Low cost biosorbent (Melon Peel) for effective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution. Case Studies Chem. Environ. Eng. 6, 100242 (2022). https://doi.org/10.1016/j.cscee.2022.100242

    Article  CAS  Google Scholar 

  2. Ahsan, M.A., Katla, S.K., Islam, M.T., Hernandez-Viezcas, J.A., Martinez, L.M., Díaz-Moreno, C.A., Noveron, J.C.: Adsorptive removal of methylene blue, tetracycline and Cr (VI) from water using sulfonated tea waste. Environ. Technol. Innov. 11, 23–40 (2018). https://doi.org/10.1016/j.eti.2018.04.003

    Article  Google Scholar 

  3. Ampiaw, R.E., Lee, W.: Persimmon tannins as biosorbents for precious and heavy metal adsorption in wastewater: a review. Int. J. Environ. Sci. Technol. 17, 3835–3846 (2020). https://doi.org/10.1007/s13762-020-02748-3

    Article  CAS  Google Scholar 

  4. Anakhu, E.A., Ameh, V.I., Modekwe, H.U., Ayeleru, O.O., Ramatsa, I.M.: Remediation of cadmium and chromium using modified Vitex doniana waste plant Seed’s biochar in quarry site surface water. Environ. Funct. Mater. (2024). https://doi.org/10.1016/j.efmat.2024.02.002

    Article  Google Scholar 

  5. Arslan, D.Ş., Ertap, H., Şenol, Z.M., El Messaoudi, N., Mehmeti, V.: Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution. J. Polym Environ. 1–15 (2023). https://doi.org/10.1007/s10924-023-03004-8

  6. Arim, A.L., Quina, M.J., Gando-Ferreira, L.M.: Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: characterization, batch and column studies. Process Saf. Environ. Prot. 121, 374–386 (2019). https://doi.org/10.1016/j.psep.2018.11.001

    Article  CAS  Google Scholar 

  7. Biesinger, M.C., Brown, C., Mycroft, J.R., Davidson, R.D., McIntyre, N.S.: X-ray photoelectron spectroscopy studies of chromium compounds. Surface Interf. Anal.: Int. J. Devoted Dev. Appl. Tech. Anal. Surfaces, Interf. Thin Films 36(12), 1550–1563 (2004). https://doi.org/10.1002/sia.1983

    Article  CAS  Google Scholar 

  8. Bilal, M., Ihsanullah, I., Younas, M., Shah, M.U.H.: Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep. Purif. Technol. 278, 119510 (2021). https://doi.org/10.1016/j.seppur.2021.119510

    Article  CAS  Google Scholar 

  9. Chao, G., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Wei, L.: Effect of porous zinc–biochar nanocomposites on Cr (VI) adsorption from aqueous solution [J]. RSC Adv. 5, 35107–35115 (2015)

    Article  Google Scholar 

  10. Chand, P., Bafana, A., Pakade, Y.B.: Xanthate modified apple pomace as an adsorbent for removal of Cd (II), Ni (II) and Pb (II), and its application to real industrial wastewater. Int. Biodeterior. Biodegradation 97, 60–66 (2015). https://doi.org/10.1016/j.ibiod.2014.10.015

    Article  CAS  Google Scholar 

  11. Chauhan, D., Afreen, S., Mishra, S., Sankararamakrishnan, N.: Synthesis, characterization and application of zinc augmented aminated PAN nanofibers towards decontamination of chemical and biological contaminants. J. Ind. Eng. Chem. 55, 50–64 (2017). https://doi.org/10.1016/j.jiec.2017.06.027

    Article  CAS  Google Scholar 

  12. Chen, D., Wang, X., Wang, X., Feng, K., Su, J., Dong, J.: The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci. Total Environ. 714, 136550 (2020). https://doi.org/10.1016/j.scitotenv.2020.136550

    Article  CAS  PubMed  Google Scholar 

  13. Córdova, B.M., Venâncio, T., Olivera, M., Huamani-Palomino, R.G., Valderrama, A.C.: Xanthation of alginate for heavy metal ions removal. Characterization of xanthate-modified alginates and its metal derivatives. Int. J. Biol. Macromol. 169, 130–142 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.022

    Article  CAS  PubMed  Google Scholar 

  14. Dong, X., Ma, L.Q., Li, Y.: Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 190(1–3), 909–915 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  15. El Messaoudi, N., Cigeroglu, Z., Şenol, Z.M., Bouich, A., Kazan-Kaya, E.S., Noureen, L., Américo-Pinheiro, J.H.P.: Chapter Fourteen Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption. In: Kumar, A., Bilal, M., Ferreira, L.F.R. (eds.) In Advances in Chemical Pollution, Environmental Management and Protection, vol. 10, pp. 305–345. Elsevier (2023). https://doi.org/10.1016/bs.apmp.2023.06.016

    Chapter  Google Scholar 

  16. El Messaoudi, N., Cigeroglu, Z., Şenol, Z.M., Elhajam, M., Noureen, L.: A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials. J. Water Process Eng. 55, 104150 (2023). https://doi.org/10.1016/j.jwpe.2023.104150

    Article  Google Scholar 

  17. El Messaoudi, N., Ciğeroğlu, Z., Şenol, Z.M., Kazan-Kaya, E.S., Fernine, Y., Gubernat, S., Lopicic, Z.: Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review. Biomass Convers. Biorefinery 1–22 (2024). https://doi.org/10.1007/s13399-023-05264-9

  18. El Mouden, A., El Messaoudi, N., El Guerraf, A., Bouich, A., Mehmeti, V., Lacherai, A., ... Américo-Pinheiro, J.H.P.: Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@ Fe3O4 nanocomposite fabricated as nanoadsorbent. Environ. Res. 225, 115606 (2023). https://doi.org/10.1016/j.envres.2023.115606

  19. El Mouden, A., El Guerraf, A., El Messaoudi, N., Haounati, R., Ait El Fakir, A., Lacherai, A.: Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem. Africa 5(3), 745–759 (2022). https://doi.org/10.1007/s42250-022-00350-3

    Article  CAS  Google Scholar 

  20. El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z.G., Bouich, A.: Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigm. Resin Technol. 51(5), 477–488 (2021). https://doi.org/10.1108/PRT-04-2021-0045

    Article  Google Scholar 

  21. Fan, R., Yi, Q., Xie, Y., Xie, F., Zhang, Q., Luo, Z. (2016). Enhanced adsorption and recovery of Pb (II) from aqueous solution by alkali‐treated persimmon fallen leaves. J. Appl. Polym. Sci. 133(28). https://doi.org/10.1002/app.43656

  22. Feng, Y., Du, Y., Chen, Z., Du, M., Yang, K., Lv, X., Li, Z.: Synthesis of Fe 3 O 4 nanoparticles with tunable sizes for the removal of Cr (VI) from aqueous solution. J. Coat. Technol. Res. 15, 1145–1155 (2018). https://doi.org/10.1007/s11998-018-0052-9

    Article  CAS  Google Scholar 

  23. Garg, R., Garg, R., Sillanpää, M., Alimuddin, Khan, M.A., Mubarak, N.M., Tan, Y.H.: Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents. Sci. Rep. 13(1), 6859 (2023). https://doi.org/10.1038/s41598-023-33843-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong, W.X., Qu, J.H., Liu, R.P., Lan, H.C.: Effect of aluminum fluoride complexation on fluoride removal by coagulation. Colloids Surf., A 395, 88–93 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.010

    Article  CAS  Google Scholar 

  25. Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., ... Mishra, P. K.: A review of adsorbents for heavy metal decontamination: growing approach to wastewater treatment. Materials 14(16), 4702 (2021). https://doi.org/10.3390/ma14164702

  26. Gupta, S., Garg, D., Kumar, A.: Cadmium biosorption using Aloe. barbadensis Miller leaves waste powder treated with sodium bicarbonate. Clean. Waste Syst. 3, 100032 (2022). https://doi.org/10.1016/j.clwas.2022.100032

    Article  Google Scholar 

  27. Irshad, Z., Bibi, I., Ghafoor, A., Majid, F., Kamal, S., Ezzine, S., Iqbal, M.: Ni doped SrFe12O19 nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation. Results Phys. 42, 106006 (2022). https://doi.org/10.1016/j.rinp.2022.106006

    Article  Google Scholar 

  28. Joseph, L., Jun, B.M., Flora, J.R., Park, C.M., Yoon, Y.: Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229, 142–159 (2019). https://doi.org/10.1016/j.chemosphere.2019.04.198

    Article  CAS  PubMed  Google Scholar 

  29. Kim, H.S., Jeong, S.S., Lee, J.G., Yoon, J.H., Lee, S.P., Kim, K.R., Yang, J.E.: Biologically produced sulfur as a novel adsorbent to remove Cd2+ from aqueous solutions. J. Hazard. Mater. 419, 126470 (2021). https://doi.org/10.1016/j.jhazmat.2021.126470

    Article  CAS  PubMed  Google Scholar 

  30. Lee, S.Y., Choi, H.J.: Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J. Environ. Manage. 209, 382–392 (2018). https://doi.org/10.1016/j.jenvman.2017.12.080

    Article  CAS  PubMed  Google Scholar 

  31. Liang, S., Guo, X., Feng, N., Tian, Q.: Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. J. Hazard. Mater. 170(1), 425–429 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.078

    Article  CAS  PubMed  Google Scholar 

  32. Lippitz, A., Hübert, T.: XPS investigations of chromium nitride thin films. Surf. Coat. Technol. 200(1–4), 250–253 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.091

    Article  CAS  Google Scholar 

  33. Liu, C., Virginie, M., Griboval-Constant, A., Khodakov, A.Y.: Potassium promotion effects in carbon nanotube supported molybdenum sulfide catalysts for carbon monoxide hydrogenation. Catal. Today 261, 137–145 (2016). https://doi.org/10.1016/j.cattod.2015.07.003

    Article  CAS  Google Scholar 

  34. Liu, F., Hua, S., Wang, C., Hu, B.: Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U (VI) and Cr (VI) removal. Chemosphere 287, 132199 (2022). https://doi.org/10.1016/j.chemosphere.2021.132199

    Article  CAS  PubMed  Google Scholar 

  35. Li, Q., Zhang, Y., Liao, Y., Huang, J., Dang, Z., Guo, C.: Removal of hexavalent chromium using biogenic mackinawite (FeS)-deposited kaolinite. J. Colloid Interface Sci. 572, 236–245 (2020). https://doi.org/10.1016/j.jcis.2020.03.077

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., Shan, H., Pang, Y., Zhan, H., Zeng, C.: Iron modified chitosan/coconut shell activated carbon composite beads for Cr (VI) removal from aqueous solution. Int. J. Biol. Macromol. 224, 156–169 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.112

    Article  CAS  PubMed  Google Scholar 

  37. Lv, D., Zhou, X., Zhou, J., Liu, Y., Li, Y., Yang, K., Xu, X.: Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium (II) removal from aqueous solutions. Appl. Surf. Sci. 442, 114–123 (2018). https://doi.org/10.1016/j.apsusc.2018.02.085

    Article  CAS  Google Scholar 

  38. Lu, X., Wu, J., Guo, Y.: Removal of Cd (II) from aqueous solution by sulfur-functionalized walnut shell: adsorption performance and micro-structural morphology. Desalination Water Treat 169, 322–332 (2019). https://doi.org/10.5004/dwt.2019.24742

    Article  CAS  Google Scholar 

  39. Mahmoud, M.E., El-Sharkawy, R.M., Ibrahim, G.A.: Promoted adsorptive removal of chromium (vi) ions from water by a green-synthesized hybrid magnetic nanocomposite (NFe 3O4 Starch-Glu-NFe3O4 ED). RSC Adv. 11(24), 14829–14843 (2021). https://doi.org/10.1039/D1RA00961C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno-López, A.Y., González-López, M.E., Manríquez-González, R., González-Cruz, R., Pérez-Fonseca, A.A., Gómez, C., Robledo-Ortíz, J.R.: Evaluation of the Cr (VI) adsorption performance of xanthate polysaccharides supported onto agave fiber-LDPE foamed composites. Water Air Soil Pollut. 230, 1–21 (2019). https://doi.org/10.1007/s11270-019-4181-2

    Article  CAS  Google Scholar 

  41. Othmani, A., Magdouli, S., Kumar, P.S., Kapoor, A., Chellam, P.V., Gökkuş, Ö.: Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. Environ. Res. 204, 111916 (2022). https://doi.org/10.1016/j.envres.2021.111916

    Article  CAS  PubMed  Google Scholar 

  42. Paralikar, P., Rai, M.: Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnol. 12(1), 25–31 (2018). https://doi.org/10.1049/iet-nbt.2017.0079

    Article  Google Scholar 

  43. Pillai, S.S., Deepa, B., Abraham, E., Girija, N., Geetha, P., Jacob, L., Koshy, M.: Biosorption of Cd (II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 98, 352–360 (2013). https://doi.org/10.1016/j.ecoenv.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  44. Purrostam, S., Rahimi-Ahar, Z., Babapoor, A., Nematollahzadeh, A., Salahshoori, I., Seyfaee, A.: Melamine functionalized mesoporous silica SBA-15 for separation of chromium (VI) from wastewater. Mater. Chem. Phys. 307, 128240 (2023). https://doi.org/10.1016/j.matchemphys.2023.128240

    Article  CAS  Google Scholar 

  45. Qu, J., Meng, X., Zhang, Y., Meng, Q., Tao, Y., Hu, Q., Shoemaker, C.A.: A combined system of microwave-functionalized rice husk and poly-aluminium chloride for trace cadmium-contaminated source water purification: exploration of removal efficiency and mechanism. J. Hazard. Mater. 379, 120804 (2019). https://doi.org/10.1016/j.jhazmat.2019.120804

    Article  CAS  PubMed  Google Scholar 

  46. Raj, R., Dalei, K., Chakraborty, J., Das, S.: Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J. Colloid Interface Sci. 462, 166–175 (2016). https://doi.org/10.1016/j.jcis.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  47. Sankararamakrishnan, N., Dixit, A., Iyengar, L., Sanghi, R.: Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Biores. Technol. 97(18), 2377–2382 (2006). https://doi.org/10.1016/j.biortech.2005.10.024

    Article  CAS  Google Scholar 

  48. Sankararamakrishnan, N., Shankhwar, A., Chauhan, D.: Mechanistic insights on immobilization and decontamination of hexavalent chromium onto nano MgS/FeS doped cellulose nanofibres. Chemosphere 228, 390–397 (2019). https://doi.org/10.1016/j.chemosphere.2019.04.166

    Article  CAS  PubMed  Google Scholar 

  49. Şenol, Z.M., Elma, E., El Messaoudi, N., Mehmeti, V.: Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: experimental and Monte Carlo simulations studies. J. Mol. Liq. 391, 123310 (2023). https://doi.org/10.1016/j.molliq.2023.123310

    Article  CAS  Google Scholar 

  50. Şenol, Z.M., Messaoudi, N.E., Fernine, Y., Keskin, Z.S.: Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Convers Biorefinery 1–14 (2023). https://doi.org/10.1007/s13399-023-03781-1

  51. Shi, X., Qiao, Y., An, X., Tian, Y., Zhou, H.: High-capacity adsorption of Cr (VI) by lignin-based composite: characterization, performance and mechanism. Int. J. Biol. Macromol. 159, 839–849 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.130

    Article  CAS  PubMed  Google Scholar 

  52. Szczurek, A., Amaral-Labat, G., Fierro, V., Pizzi, A., Celzard, A.: Chemical activation of tannin-based hydrogels by soaking in KOH and NaOH solutions. Microporous Mesoporous Mater. 196, 8–17 (2014). https://doi.org/10.1016/j.micromeso.2014.04.051

    Article  CAS  Google Scholar 

  53. Thabede, P.M., Shooto, N.D., Xaba, T., Naidoo, E.B.: Adsorption studies of toxic cadmium (II) and chromium (VI) ions from aqueous solution by activated black cumin (Nigella sativa) seeds. J. Environ. Chem. Eng. 8(4), 104045 (2020). https://doi.org/10.1016/j.jece.2020.104045

    Article  CAS  Google Scholar 

  54. Tor, A.: Removal of fluoride from water using anion-exchange membrane under Donnan dialysis condition. J. Hazard. Mater. 141(3), 814–818 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.043

    Article  CAS  PubMed  Google Scholar 

  55. Viswanathan, N., Meenakshi, S.: Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride. J. Hazard. Mater. 162(2–3), 920–930 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.118

    Article  CAS  PubMed  Google Scholar 

  56. Wang, C., Bi, L., Liu, J., Huang, B., Wang, F., Zhang, Y., ... Song, M.: Microalgae-derived carbon quantum dots mediated formation of metal sulfide nano-adsorbents with exceptional cadmium removal performance. J. Colloid Interface Sci. 629, 994–1002 (2023). https://doi.org/10.1016/j.jcis.2022.08.188

  57. Wang, J., Wang, X., Zhao, G., Song, G., Chen, D., Chen, H., Wang, X.: Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium (VI) from aqueous solutions. Chem. Eng. J. 334, 569–578 (2018). https://doi.org/10.1016/j.cej.2017.10.068

    Article  CAS  Google Scholar 

  58. Wang, N., Xu, X., Li, H., Zhai, J., Yuan, L., Zhang, K., Yu, H.: Preparation and application of a xanthate-modified thiourea chitosan sponge for the removal of Pb (II) from aqueous solutions. Ind. Eng. Chem. Res. 55(17), 4960–4968 (2016). https://doi.org/10.1021/acs.iecr.6b00694

    Article  CAS  Google Scholar 

  59. Wang, Q., Zheng, C., Cui, W., He, F., Zhang, J., Zhang, T.C., He, C.: Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin. Chem. Eng. J. 391, 123581 (2020). https://doi.org/10.1016/j.cej.2019.123581

    Article  CAS  Google Scholar 

  60. Wu, Z., Zhou, W., Deng, W., Xu, C., Cai, Y., Wang, X.: Antibacterial and hemostatic thiol-modified chitosan-immobilized AgNPs composite sponges. ACS Appl. Mater. Interfaces. 12(18), 20307–20320 (2020). https://doi.org/10.1021/acsami.0c05430

    Article  CAS  PubMed  Google Scholar 

  61. Xu, Q., Wang, Y., Jin, L., Wang, Y., Qin, M.: Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater. 339, 91–99 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  62. Yang, K., Wang, G., Chen, X., Wang, X., Liu, F.: Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan. Colloids Surf., A 558, 384–391 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.082

    Article  CAS  Google Scholar 

  63. Yang, K., Wang, G., Liu, F., Wang, X., Chen, X.: Removal of multiple heavy metal ions using a macromolecule chelating flocculant xanthated chitosan. Water Sci. Technol. 79(12), 2289–2297 (2019). https://doi.org/10.2166/wst.2019.230

    Article  CAS  PubMed  Google Scholar 

  64. Yi, Q., Fan, R., Xie, F., Min, H., Zhang, Q., Luo, Z.: Selective recovery of Au (III) and Pd (II) from waste PCBs using ethylenediamine modified persimmon tannin adsorbent. Procedia Environ. Sci. 31, 185–194 (2016). https://doi.org/10.1016/j.proenv.2016.02.025

    Article  CAS  Google Scholar 

  65. Yu, S.W., Choi, H.J.: Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions. Water Sci. Technol. 78(4), 837–847 (2018). https://doi.org/10.2166/wst.2018.354

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, S., Dang, J., Lin, J., Liu, M., Zhang, M., Chen, S.: Selective enrichment and separation of Ag (I) from electronic waste leachate by chemically modified persimmon tannin. J. Environ. Chem. Eng. 9(1), 104994 (2021). https://doi.org/10.1016/j.jece.2020.104994

    Article  CAS  Google Scholar 

  67. Zheng, L., Peng, D., Meng, P.: Corncob-supported aluminium-manganese binary oxide composite enhanced removal of cadmium ions. Colloids Surf., A 561, 109–119 (2019). https://doi.org/10.1016/j.colsurfa.2018.10.075

    Article  CAS  Google Scholar 

  68. Zhu, G., Liu, J., Yin, J., Li, Z., Ren, B., Sun, Y., Liu, Y.: Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution. Chem. Eng. J. 288, 390–398 (2016). https://doi.org/10.1016/j.cej.2015.12.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Department of Chemistry, Banasthali Vidyapith, Rajasthan, and Thematic Unit of Excellence on Soft Nanofabrication, Advance Centre for Material Science, and Advanced Imaging Centre at IIT Kanpur are acknowledged for various characterization studies.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Nalini Sankararamakrishnan: Conceptualization, Methodology, Visualization, Investigation, Supervision, Writing—original draft, review & editing. Neha Singh: Data curation, Investigation, Writing – original draft, review & editing. Sanjana Tewari: Data curation, Investigation, Validation Writing—review & editing. Jaya Dwivedi: Data Validation.

Corresponding author

Correspondence to Nalini Sankararamakrishnan.

Ethics declarations

Ethical approval

Not applicable, because this article does not contain any studies with human or animal subjects.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 981 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewari, S., Singh, N., Dwivedi, J. et al. Synthesis, characterization and application of xanthated Diospyros kaki (persimmon) leaves for the treatment of chemical and biological contaminants in aqueous solutions. Adsorption (2024). https://doi.org/10.1007/s10450-024-00470-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00470-x

Keywords

Navigation