Skip to main content
Log in

Comparison of 3D-cDFT and GCMC simulations for fluid–structure analysis in amorphous carbon nanoporous materials

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Investigating fluid behavior in nanoporous materials is essential for gas storage, separation, and catalysis applications. Here, we present a comparison of two computational methods for fluid–structure analysis in amorphous nanoporous carbon materials: three-dimensional (3D) classical density functional theory (cDFT) and grand canonical Monte Carlo (GCMC) simulations. We extended our recent development of 3D-cDFT to allow density-profile analysis without symmetry assumptions, enhancing its applicability to a broader range of porous materials. We provide a theoretical overview and discuss the advantages and limitations of each method. Our results highlight the accuracy of both 3D-cDFT and GCMC simulations while emphasizing differences in computational cost, precision, and scope. We also explore the impact of the non-crystalline structure of amorphous carbon nanopores on fluid structure and adsorption isotherms, as well as fluid–fluid and fluid–solid interactions. We offer insights for selecting computational methods in fluid structure analysis of nanoporous materials, guiding future research and optimization in advanced material development for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and code that support the findings of this study are available on the author’s GitHub repository: https://github.com/elvissoares/PyDFTlj. No experimental data is provided.

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  2. An, N., Jiang, Y., Wang, Z., et al.: Efficient water purification and desalination using hydrogel and aerogel solar evaporators based on different carbon materials. Sep. Purif. Technol. 301, 122003 (2022). https://doi.org/10.1016/j.seppur.2022.122003

    Article  CAS  Google Scholar 

  3. Balbuena, P.B., Gubbins, K.E.: Theoretical interpretation of adsorption behavior of simple fluids in slit pores. Langmuir 9(7), 1801–1814 (1993). https://doi.org/10.1021/la00031a031

    Article  CAS  Google Scholar 

  4. Barker, J.A., Henderson, D.: Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47(11), 4714–4721 (1967). https://doi.org/10.1063/1.1701689

    Article  CAS  Google Scholar 

  5. Barker, J.A., Henderson, D.: Perturbation theory and equation of state for fluids: the square-well potential. J. Chem. Phys. 47(8), 2856–2861 (1967). https://doi.org/10.1063/1.1712308

    Article  CAS  Google Scholar 

  6. Bernet, T., Piñeiro, M.M., Plantier, F., et al.: A 3D non-local density functional theory for any pore geometry. Mol. Phys. 118(9–10), e1767308 (2020). https://doi.org/10.1080/00268976.2020.1767308

    Article  CAS  Google Scholar 

  7. Bitzek, E., Koskinen, P., Gähler, F., et al.: Structural relaxation made simple. Phys. Rev. Lett. 97(17), 1–4 (2006). https://doi.org/10.1103/PhysRevLett.97.170201

    Article  CAS  Google Scholar 

  8. Coasne, B., Pikunic, J., Pellenq, R.M., et al.: Comparison between adsorption in pores of a simple geometry and realistic models of porous materials. MRS Online Proc. Libr. (OPL) 790, P8-5 (2003). https://doi.org/10.1557/PROC-790-P8.5

    Article  Google Scholar 

  9. Corrente, N.J., Hinks, E.L., Kasera, A., et al.: Modeling adsorption of simple fluids and hydrocarbons on nanoporous carbons. Carbon 197, 526–533 (2022). https://doi.org/10.1016/j.carbon.2022.06.071

    Article  CAS  Google Scholar 

  10. Cotterman, R.L., Schwarz, B.J., Prausnitz, J.M.: Molecular thermodynamics for fluids at low and high densities. I: part Pure fluids containing small or large molecules. AIChE J. 32(11), 1787–1798 (1986). https://doi.org/10.1002/aic.690321104

    Article  CAS  Google Scholar 

  11. Crawford, B., Timalsina, U., Quach, C.D., et al.: MoSDeF-GOMC: Python software for the creation of scientific workflows for the Monte Carlo simulation engine GOMC. J. Chem. Inf. Model. 63(4), 1218–1228 (2023). https://doi.org/10.1021/acs.jcim.2c01498

    Article  CAS  PubMed  Google Scholar 

  12. de Tomas, C., Suarez-Martinez, I., Vallejos-Burgos, F., et al.: Structural prediction of graphitization and porosity in carbide-derived carbons. Carbon 119, 1–9 (2017). https://doi.org/10.1016/j.carbon.2017.04.004

    Article  CAS  Google Scholar 

  13. de Tomas, C., Suarez-Martinez, I., Marks, N.A.: Carbide-derived carbons for dense and tunable 3D graphene networks. Appl. Phys. Lett. 112(25), 251907 (2018). https://doi.org/10.1063/1.5030136

    Article  CAS  Google Scholar 

  14. Echeverri Restrepo, S., Andric, P.: ABC-FIRE: accelerated bias-corrected fast inertial relaxation engine. Comput. Mater. Sci. 218(September 2022), 111978 (2023). https://doi.org/10.1016/j.commatsci.2022.111978

    Article  CAS  Google Scholar 

  15. Eddaoudi, M., Kim, J., Rosi, N., et al.: Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554), 469–472 (2002). https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  16. El-Sharkawy, I.I., Mansour, M.H., Awad, M.M., et al.: Investigation of natural gas storage through activated carbon. J. Chem. Eng. Data 60(11), 3215–3223 (2015). https://doi.org/10.1021/acs.jced.5b00430

    Article  CAS  Google Scholar 

  17. Evans, R.: Density Functional Theory for Inhomogeneous Fluids I: Simple Fluids in Equilibrium. Lectures at 3rd Warsaw School of Statistical Physics, Kazimierz Dolny (2009)

  18. Fu, J., Liu, Y., Tian, Y., et al.: Density functional methods for fast screening of metal–organic frameworks for hydrogen storage. J. Phys. Chem. C 119(10), 5374–5385 (2015). https://doi.org/10.1021/jp505963m

    Article  CAS  Google Scholar 

  19. Fu, J., Tian, Y., Wu, J.: Classical density functional theory for methane adsorption in metal–organic framework materials. AIChE J. 61(9), 3012–3021 (2015). https://doi.org/10.1002/aic.14877

    Article  CAS  Google Scholar 

  20. Gregg, S., Sing, K.: Adsorption, Surface Area and Porosity, 2nd edn., pp. 195–228. Academic Press, New York (1982)

    Google Scholar 

  21. Guénolé, J., Nöhring, W.G., Vaid, A., et al.: Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS. Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109584

    Article  Google Scholar 

  22. Guo, P., Shin, J., Greenaway, A.G., et al.: A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature 524(7563), 74–78 (2015). https://doi.org/10.1038/nature14575

    Article  CAS  PubMed  Google Scholar 

  23. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids: With Applications to Soft Matter. Academic Press, New York (2013)

    Google Scholar 

  24. Henderson, D.: Fundamentals of Inhomogeneous Fluids. CRC Press, Boca Raton (1992)

    Google Scholar 

  25. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1964)

    Google Scholar 

  26. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013). https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  27. Jain, S.K., Pellenq, R.J.M., Pikunic, J.P., et al.: Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. Langmuir 22(24), 9942–9948 (2006). https://doi.org/10.1021/la053402z

    Article  CAS  PubMed  Google Scholar 

  28. Johnson, J.K., Zollweg, J.A., Gubbins, K.E.: The Lennard–Jones equation of state revisited. Mol. Phys. 78(3), 591–618 (1993). https://doi.org/10.1080/00268979300100411

    Article  CAS  Google Scholar 

  29. Kalyuzhnyi, Y., Cummings, P.: Phase diagram for the Lennard–Jones fluid modelled by the hard-core Yukawa fluid. Mol. Phys. 87(6), 1459–1462 (1996). https://doi.org/10.1080/00268979600100981

    Article  CAS  Google Scholar 

  30. Kessler, C., Eller, J., Gross, J., et al.: Adsorption of light gases in covalent organic frameworks: comparison of classical density functional theory and grand canonical monte carlo simulations. Microporous Mesoporous Mater. 324, 111263 (2021). https://doi.org/10.1016/j.micromeso.2021.111263

    Article  CAS  Google Scholar 

  31. Kierlik, E., Rosinberg, M.L.: Density-functional theory for inhomogeneous fluids: adsorption of binary mixtures. Phys. Rev. A 44(8), 5025–5037 (1991). https://doi.org/10.1103/PhysRevA.44.5025

    Article  CAS  PubMed  Google Scholar 

  32. Kostoglou, N., Koczwara, C., Prehal, C., et al.: Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 40, 49–64 (2017). https://doi.org/10.1016/j.nanoen.2017.07.056

    Article  CAS  Google Scholar 

  33. Li, Y., Yu, J.: New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 114(14), 7268–7316 (2014). https://doi.org/10.1021/cr500010r

    Article  CAS  PubMed  Google Scholar 

  34. Li, J., Corma, A., Yu, J.: Synthesis of new zeolite structures. Chem. Soc. Rev. 44(20), 7112–7127 (2015). https://doi.org/10.1039/C5CS00023H

    Article  CAS  PubMed  Google Scholar 

  35. Li, Q., Xu, W., Liang, X., et al.: Specific alkali metal sites as co2 traps in activated carbon with different pore size for co2 selective adsorption: GCMC and dft simulations. Fuel 325, 124871 (2022). https://doi.org/10.1016/j.fuel.2022.124871

    Article  CAS  Google Scholar 

  36. Liu, L., Nicholson, D., Bhatia, S.K.: Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: a molecular simulation study. Chem. Eng. Sci. 121, 268–278 (2015). https://doi.org/10.1016/j.ces.2014.07.041

    Article  CAS  Google Scholar 

  37. Marks, N.: Modelling diamond-like carbon with the environment-dependent interaction potential. J. Phys. 14(11), 2901 (2002). https://doi.org/10.1088/0953-8984/14/11/308

    Article  CAS  Google Scholar 

  38. Marks, N.A., Cooper, N., McKenzie, D., et al.: Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon. Phys. Rev. B 65(7), 075411 (2002). https://doi.org/10.1103/PhysRevB.65.075411

    Article  CAS  Google Scholar 

  39. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998)

    Article  CAS  Google Scholar 

  40. Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990). https://doi.org/10.1021/j100389a010

    Article  CAS  Google Scholar 

  41. McGreevy, R., Pusztai, L.: Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1(6), 359–367 (1988). https://doi.org/10.1080/08927028808080958

    Article  Google Scholar 

  42. Merlet, C., Rotenberg, B., Madden, P.A., et al.: On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11(4), 306–310 (2012). https://doi.org/10.1038/nmat3260

    Article  CAS  PubMed  Google Scholar 

  43. Myers, A.L., Monson, P.A.: Adsorption in porous materials at high pressure: theory and experiment. Langmuir 18(26), 10261–10273 (2002). https://doi.org/10.1021/la026399h

    Article  CAS  Google Scholar 

  44. Neimark, A.V., Lin, Y., Ravikovitch, P.I., et al.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7), 1617–1628 (2009). https://doi.org/10.1016/j.carbon.2009.01.050

    Article  CAS  Google Scholar 

  45. Nejahi, Y., Barhaghi, M.S., Mick, J., et al.: GOMC: GPU optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids. SoftwareX 9, 20–27 (2019). https://doi.org/10.1016/j.softx.2018.11.005

    Article  Google Scholar 

  46. Nguyen, T.X., Cohaut, N., Bae, J.S., et al.: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 24(15), 7912–7922 (2008). https://doi.org/10.1021/la800351d

    Article  CAS  PubMed  Google Scholar 

  47. Palmer, J., Brennan, J., Hurley, M., et al.: Detailed structural models for activated carbons from molecular simulation. Carbon 47(12), 2904–2913 (2009). https://doi.org/10.1016/j.carbon.2009.06.037

    Article  CAS  Google Scholar 

  48. Palmer, J., Llobet, A., Yeon, S.H., et al.: Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48(4), 1116–1123 (2010). https://doi.org/10.1016/j.carbon.2009.11.033

    Article  CAS  Google Scholar 

  49. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc., p 8024–8035, (2019) http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  50. Peng, X., Vicent-Luna, J.M., Jin, Q.: Separation of CF 4 /N 2, C 2 F 6 /N 2, and SF 6 /N 2 Mixtures in Amorphous Activated Carbons Using Molecular Simulations. ACS Appl. Mater. Interfaces 12(17), 20044–20055 (2020). https://doi.org/10.1021/acsami.0c01043

    Article  CAS  PubMed  Google Scholar 

  51. Powles, R., Marks, N., Lau, D.: Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors. Phys. Rev. B 79(7), 075430 (2009). https://doi.org/10.1103/PhysRevB.79.075430

    Article  CAS  Google Scholar 

  52. Ratajczak, P., Suss, M.E., Kaasik, F., et al.: Carbon electrodes for capacitive technologies. Energy Storage Mater. 16, 126–145 (2018). https://doi.org/10.1016/j.ensm.2018.04.031

    Article  Google Scholar 

  53. Ravikovitch, P.I., Neimark, A.V.: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18(5), 1550–1560 (2002). https://doi.org/10.1021/la0107594

    Article  CAS  Google Scholar 

  54. Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 22(26), 11171–11179 (2006). https://doi.org/10.1021/la0616146

    Article  CAS  PubMed  Google Scholar 

  55. Ravikovitch, P.I., Vishnyakov, A., Russo, R., et al.: Unified approach to pore size characterization of microporous carbonaceous materials from n2, ar, and co2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  56. Ravikovitch, P.I., Vishnyakov, A., Neimark, A.V.: Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Phys. Rev. E 64(1), 011602 (2001). https://doi.org/10.1103/PhysRevE.64.011602

    Article  CAS  Google Scholar 

  57. Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63(9), 980–983 (1989). https://doi.org/10.1103/PhysRevLett.63.980

    Article  CAS  PubMed  Google Scholar 

  58. Rosenfeld, Y., Schmidt, M., Löwen, H., et al.: Fundamental-measure free-energy density functional for hard spheres: dimensional crossover and freezing. Phys. Rev. E 55(4), 4245–4263 (1997). https://doi.org/10.1103/PhysRevE.55.4245

    Article  CAS  Google Scholar 

  59. Rosi, N.L., Eckert, J., Eddaoudi, M., et al.: Hydrogen storage in microporous metal–organic frameworks. Science 300(5622), 1127–1129 (2003). https://doi.org/10.1126/science.1083440

    Article  CAS  PubMed  Google Scholar 

  60. Roth, R., Evans, R., Lang, A., et al.: Fundamental measure theory for hard-sphere mixtures revisited: the white bear version. J. Phys. 14(46), 12063–12078 (2002). https://doi.org/10.1088/0953-8984/14/46/313

    Article  CAS  Google Scholar 

  61. Sang, J., Wei, F., Dong, X.: Gas adsorption and separation in metal-organic frameworks by PC-SAFT based density functional theory. J. Chem. Phys. 155(12), 124113 (2021). https://doi.org/10.1063/5.0067172

    Article  CAS  PubMed  Google Scholar 

  62. Sauer, E., Gross, J.: Classical density functional theory for liquid-fluid interfaces and confined systems: a functional for the perturbed-chain polar statistical associating fluid theory equation of state. Ind. Eng. Chem. Res. 56(14), 4119–4135 (2017). https://doi.org/10.1021/acs.iecr.6b04551

    Article  CAS  Google Scholar 

  63. Sauer, E., Gross, J.: Prediction of adsorption isotherms and selectivities: comparison between classical density functional theory based on the perturbed-chain statistical associating fluid theory equation of state and ideal adsorbed solution theory. Langmuir 35(36), 11690–11701 (2019). https://doi.org/10.1021/acs.langmuir.9b02378

    Article  CAS  PubMed  Google Scholar 

  64. Sermoud, V., Barbosa, G., Barreto, A., Jr., et al.: Quenched solid density functional theory coupled with pc-saft for the adsorption modeling on nanopores. Fluid Phase Equilib. 521, 112700 (2020). https://doi.org/10.1016/j.fluid.2020.112700

    Article  CAS  Google Scholar 

  65. Sermoud, V.M., Barbosa, G.D., Soares, E.A., et al.: Exploring the multiple solutions of the classical density functional theory using metadynamics based method. Adsorption 27(7), 1023–1034 (2021). https://doi.org/10.1007/s10450-021-00327-7

    Article  CAS  Google Scholar 

  66. Sermoud, V., Barbosa, G., Soares, E.A., et al.: PCP-SAFT density functional theory as a much-improved approach to obtain confined fluid isotherm data applied to sub and supercritical conditions. Chem. Eng. Sci. 247, 116905 (2022). https://doi.org/10.1016/j.ces.2021.116905

    Article  CAS  Google Scholar 

  67. Sermoud, V., Barbosa, G., Vernin, N., et al.: The impact of the adsorbent energy heterogeneities by multidimensional-multicomponent PC-SAFT-DFT. Fluid Phase Equilib. 562, 113546 (2022). https://doi.org/10.1016/j.fluid.2022.113546

    Article  CAS  Google Scholar 

  68. Sevilla, M., Fuertes, A.B.: Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 4(5), 1765–1771 (2011). https://doi.org/10.1039/C0EE00784F

    Article  CAS  Google Scholar 

  69. Soares, EdA.: Pyfire. (2020) https://github.com/elvissoares/PyFIRE

  70. Soares, EdA.: Pydftlj. (2023) https://github.com/elvissoares/PyDFTlj

  71. Soares, Ed.A., Barreto, A.G., Tavares, F.W.: Classical Density Functional Theory Reveals Structural Information of H2 and CH4 Fluids Adsorbed in MOF-5. arXiv pp 1–9. (2023) arXiv:2303.11384

  72. Steele, W.A.: The physical interaction of gases with crystalline solids: I. Gas–solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973). https://doi.org/10.1016/0039-6028(73)90264-1

    Article  CAS  Google Scholar 

  73. Tang, Y., Lu, B.C.: On the mean spherical approximation for the Lennard–Jones fluid. Fluid Phase Equilib. 190(1–2), 149–158 (2001). https://doi.org/10.1016/S0378-3812(01)00600-8

    Article  CAS  Google Scholar 

  74. Tang, Y., Tong, Z., Lu, B.C.: Analytical equation of state based on the Ornstein–Zernike equation. Fluid Phase Equilib. 134(1–2), 21–42 (1997). https://doi.org/10.1016/S0378-3812(97)00049-6

    Article  CAS  Google Scholar 

  75. Tao, Y., Kanoh, H., Abrams, L., et al.: Mesopore-modified zeolites: preparation, characterization, and applications. Chem. Rev. 106(3), 896–910 (2006). https://doi.org/10.1021/cr040204o

    Article  CAS  PubMed  Google Scholar 

  76. Tao, Y., Zhang, G., Xu, H.: Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture. Sustain. Mater. Technol. 32, e00383 (2022). https://doi.org/10.1016/j.susmat.2021.e00383

    Article  CAS  Google Scholar 

  77. Teo, H.W.B., Chakraborty, A., Kayal, S.: Evaluation of CH4 and CO2 adsorption on HKUST-1 and mil-101 (CR) MOFs employing Monte Carlo simulation and comparison with experimental data. Appl. Therm. Eng. 110, 891–900 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.126

    Article  CAS  Google Scholar 

  78. Thyagarajan, R., Sholl, D.S.: A database of porous rigid amorphous materials. Chem. Mater. 32(18), 8020–8033 (2020). https://doi.org/10.1021/acs.chemmater.0c03057

    Article  CAS  Google Scholar 

  79. Thyagarajan, R., Sholl, D.S.: Molecular simulations of CH4 and CO2 diffusion in rigid nanoporous amorphous materials. J. Phys. Chem. C 126(19), 8530–8538 (2022). https://doi.org/10.1021/acs.jpcc.2c01609

    Article  CAS  Google Scholar 

  80. Vallejos-Burgos, F., de Tomas, C., Corrente, N.J., et al.: 3D nanostructure prediction of porous carbons via gas adsorption. Carbon 215, 118431 (2023). https://doi.org/10.1016/j.carbon.2023.118431

    Article  CAS  Google Scholar 

  81. VanMegen, W., Snook, I.: Physical adsorption of gases at high pressure: III. Adsorption in slit-like pores. Mol. Phys. 54(3), 741–755 (1985). https://doi.org/10.1080/00268978500100591

    Article  CAS  Google Scholar 

  82. Walton, J., Quirke, N.: Modelling the phase behaviour of a fluid within a pore. Chem. Phys. Lett. 129(4), 382–386 (1986). https://doi.org/10.1016/0009-2614(86)80363-3

    Article  CAS  Google Scholar 

  83. Wu, J.: Density functional theory for liquid structure and thermodynamics. In: Structure and bonding. Springer, Berlin (2008) https://doi.org/10.1007/430_2008_3

  84. Wu, J.: Variational Methods in Molecular Modeling. Springer, Cham (2016)

    Google Scholar 

  85. Xy, L., Chen, Y., Mo, Y.: A review of charge storage in porous carbon-based supercapacitors. New Carbon Mater. 36(1), 49–68 (2021). https://doi.org/10.1016/S1872-5805(21)60004-5

    Article  CAS  Google Scholar 

  86. Yu, Y.X.: A novel weighted density functional theory for adsorption, fluid–solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces. J. Chem. Phys. 131(2), 024704 (2009). https://doi.org/10.1063/1.3174928

    Article  CAS  PubMed  Google Scholar 

  87. Yu, Y.X., Wu, J.: Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 117(22), 10156–10164 (2002). https://doi.org/10.1063/1.1520530

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Petrobras and Shell, which provided financial support through the Research, Development, and Innovation Investment Clause in collaboration with the Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP, Brazil). Additionally, this research was partially funded by CNPq, CAPES, and FAPERJ.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

LS and ES wrote the original manuscript text. LS ran the molecular simulations and made cDFT calculations. ES made the cDFT calculations and prepared figures. AB and FT discussed the results and participated in the preparation and final revision of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Frederico W. Tavares.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: EBA14—14th Brazilian Meeting on Adsorption.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 12385 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L.J.d., Soares, E.d.A., Barreto, A.G. et al. Comparison of 3D-cDFT and GCMC simulations for fluid–structure analysis in amorphous carbon nanoporous materials. Adsorption (2024). https://doi.org/10.1007/s10450-024-00444-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00444-z

Keywords

Navigation