Skip to main content
Log in

Hydrothermal stability of Na-LTA shaped with clay binder

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Gas drying by adsorption on molecular sieves is one of the first unit operations in natural gas processing. Nevertheless, the thermal swings during regeneration combined with the presence of a complex gas mixture may lead to early adsorbent fouling. The shaping of adsorbent materials is crucial not only to reduce pressure drop in columns, but also for enhanced thermal and mechanical properties. In this work, synthesized sodium-based zeolite Linde Type A (Na-LTA) in powder was shaped by extrusion into cylindrical pellets using a clay binder followed by calcination at 673 K for 24 h. The produced 2-mm pellets had binder contents of 15 and 20% (w/w). Thereafter, the shaped pellets were subjected to an accelerated aging procedure, which exposes the samples to conditions analogous to those of Temperature Swing Adsorption drying processes with a higher severity. High-resolution water vapor isotherms at 313 K were measured before and after the simulated aging process. Results show that the sample with 20% of binder had an average decrease in water uptake (mol kg−1) of 1.2% after aging, whereas the aged zeolite in powder presented a decrease of 8.1, evidencing a protective effect of the clay binder against thermal fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Abukhadra, M.R., Adlii, A., Bakry, B.M.: Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from Water. Int. J. Biol. Macromol. 126, 402–413 (2019). https://doi.org/10.1016/J.IJBIOMAC.2018.12.225

    Article  CAS  PubMed  Google Scholar 

  2. Abukhadra, M.R., Ibrahim, S.M., Yakout, S.M., El-Zaidy, M.E., Abdeltawab, A.A.: Synthesis of Na+ trapped bentonite/zeolite-P composite as a novel catalyst for effective production of biodiesel from palm oil; effect of ultrasonic irradiation and mechanism. Energy Convers. Manage. 196, 739–750 (2019). https://doi.org/10.1016/j.enconman.2019.06.027

    Article  CAS  Google Scholar 

  3. Ahmed, Y.M.Z., Mohamed, F.M.: Variation in physico-chemical properties of iron oxide pellets using bentonite with calcium hydroxide as binder. Metallurgia Italiana 97(11–12), 31–37 (2005)

    Google Scholar 

  4. Akhtar, F., Andersson, L., Ogunwumi, S., Hedin, N., Bergström, L.: Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 34(7), 1643–1666 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.01.008

    Article  CAS  Google Scholar 

  5. Alaithan, Z.A., Mallia, G., Harrison, N.M.: Monomolecular cracking of propane: effect of zeolite confinement and acidity. ACS Omega 7(9), 7531–7540 (2022). https://doi.org/10.1021/acsomega.1c05532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Almeida, A., Ribeiro, R.P.P.L., Mota, J.P.B., Grande, C.: Extrusion and characterization of high Si/Al ratio ZSM-5 using silica binder. Energies (2020). https://doi.org/10.3390/en13051201

    Article  Google Scholar 

  7. Aranovich, G., Donohue, M.: Analysis of adsorption isotherms: lattice theory predictions, classification of isotherms for gas-solid equilibria, and similarities in gas and liquid adsorption behavior. J. Colloid Interface Sci. 200(2), 273–290 (1998). https://doi.org/10.1006/jcis.1997.5398

    Article  CAS  Google Scholar 

  8. Aranovich, G.L., Donohue, M.D.: A new approach to analysis of multilayer adsorption. J. Colloid Interface Sci. 173(2), 515–520 (1995). https://doi.org/10.1006/jcis.1995.1353

    Article  CAS  Google Scholar 

  9. Belford, R. (University of Arkansas at Little Rock): “8.8: Bond and molecular polarity”. LibreTexts Chemistry: General Chemistry 1. 2020. https://chem.libretexts.org/Courses/University_of_Arkansas_Little_Rock/Chem_1402%3A_General_Chemistry_1_(Belford)/Text/8%3A_Bonding_and_Molecular_Structure/8.8%3A_Bond_and_Molecular_Polarity (2020)

  10. Benguella, B., Yacouta-Nour, A.: Adsorption of bezanyl red and nylomine green from aqueous solutions by natural and acid-activated bentonite. Desalination 235(1–3), 276–292 (2009). https://doi.org/10.1016/J.DESAL.2008.01.016

    Article  CAS  Google Scholar 

  11. Bishnoi, A., Kumar, S., Joshi, N.: Wide-angle X-ray diffraction (WXRD). In: Microscopy Methods in Nanomaterials Characterization, pp. 313–337. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  12. Borchardt, L., Michels, N.L., Nowak, T., Mitchell, S., Pérez-Ramírez, J.: Structuring zeolite bodies for enhanced heat-transfer properties. Microporous Mesoporous Mater. 208, 196–202 (2015). https://doi.org/10.1016/j.micromeso.2015.01.028

    Article  CAS  Google Scholar 

  13. Bouchiba, N., Toumi, N., Bengueddach, A.: Preparation of a New Micro-Mesoporous Omega Zeolite by Hydrothermal Route: Effect of Crystallization Time. SILICON 14(9), 5085–5090 (2022). https://doi.org/10.1007/s12633-021-01254-6

    Article  CAS  Google Scholar 

  14. Brião, G., de Vargas, M., Carlos, G., da Silva, M., Vieira, G.A., Chu, K.H.: Correlation of type II adsorption isotherms of water contaminants using modified BET equations. Colloids Interface Sci. Commun. 46, 100557 (2022). https://doi.org/10.1016/j.colcom.2021.100557

    Article  CAS  Google Scholar 

  15. Cheng, L.S., Yang, R.T.: A new class of non-zeolitic sorbents for air separation: lithium ion exchanged pillared clays. Ind. Eng. Chem. Res. 34(6), 2021–2028 (1995). https://doi.org/10.1021/ie00045a011

    Article  CAS  Google Scholar 

  16. Carlsson, A. F., Rajani, J. B., A. J. Kodde:. “Finding the Fountain of Youth for a Mol Sieve Dehydration Unit”. In: 83rd GPA Convention, 14. New Orleans, USA (2004)

  17. Cotes, M.T., Martínez, C., Iglesias, F.J., Corpas, F.A.: Estudio de La Influencia Del Método de Moldeo de Materiales Cerámicos Elaborados a Partir de Residuos En Sus Propiedades. Bol. Soc. Esp. Ceram. Vidrio 52(4), 169–176 (2013). https://doi.org/10.3989/cyv.222013

    Article  CAS  Google Scholar 

  18. Cousin-Saint-Remi, J., Finoulst, A.L., Jabbour, C., Baron, G.V., Denayer, J.F.M.: Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorption. Microporous Mesoporous Mater. 2018, 0–1 (2019). https://doi.org/10.1016/j.micromeso.2019.02.009

    Article  CAS  Google Scholar 

  19. Cousin-Saint-Remi, J., Van der Perre, S., Segato, T., Delplancke, M.-P., Goderis, S., Terryn, H., Baron, G., Denayer, J.: Highly robust MOF polymeric beads with a controllable size for molecular separations. ACS Appl. Mater. Interfaces 11(14), 13694–13703 (2019). https://doi.org/10.1021/acsami.9b00521

    Article  CAS  PubMed  Google Scholar 

  20. Cundy, C.S., Cox, P.A.: The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103(3), 663–701 (2003). https://doi.org/10.1021/cr020060i

    Article  CAS  PubMed  Google Scholar 

  21. Deng, W., Wang, X., Lam, C.H., Xiong, Z., Han, H., Jun, Xu., Jiang, L., et al.: Evolution of coke structures during electrochemical upgrading of bio-oil. Fuel Process. Technol. 225, 107036 (2022). https://doi.org/10.1016/J.FUPROC.2021.107036

    Article  CAS  Google Scholar 

  22. Do, Duong D.: Adsorption analysis: equilibria and kinetics. series on chemical engineering. Series on Chemical Engineering. Vol. 2. Imperial College Press and distributed by World Scientific Publishing Co. https://doi.org/10.1142/p111 (1998)

  23. Drag, E.B., Miecznikowski, A., Abo-Lemon, F., Rutkowski, M.: Synthesis of A, X and Y zeolites from clay minerals. In: Studies in Surface Science and Catalysis Vol. 24(C), pp. 147–154. Elsevier, Amsterdam (1985)

    Google Scholar 

  24. Et-Tayea, Y., Harrati, A., Rachid, A., Nasri, H., Attou, A., Arkame, Y., Manni, A., et al.: Mineralogical and physico-chemical characterization of bentonite materials from the Oued Zemmour area (Oriental Rif, Nador-Morocco): valorization in ceramic field. Boletín de La Sociedad Española de Cerámica y Vidrio (2022). https://doi.org/10.1016/j.bsecv.2022.03.001

    Article  Google Scholar 

  25. Fan, Z., Zhao, Y., Tan, Q., Mo, N., Zhang, M.-X., Mingyuan, Lu., Huang, H.: Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping. Acta Mater. 170, 24–37 (2019). https://doi.org/10.1016/j.actamat.2019.03.020

    Article  CAS  Google Scholar 

  26. Farag, H.A.A., Ezzat, M.M., Amer, H., Nashed, A.W.: Natural gas dehydration by desiccant materials. Alex. Eng. J. 50(4), 431–439 (2011). https://doi.org/10.1016/J.AEJ.2011.01.020

    Article  CAS  Google Scholar 

  27. Fonseca, J., Gong, T.: Fabrication of metal-organic framework architectures with macroscopic size: a review. Coord. Chem. Rev. 462, 214520 (2022). https://doi.org/10.1016/j.ccr.2022.214520

    Article  CAS  Google Scholar 

  28. Gallego-Gómez, F., Farrando-Pérez, J., López, C., Silvestre-Albero, J.: Micropore filling and multilayer formation in Stöber spheres upon water adsorption. J. Phys. Chem. C 124(38), 20922–20930 (2020). https://doi.org/10.1021/acs.jpcc.0c05313

    Article  CAS  Google Scholar 

  29. Giang, H., Nguyen, T., Tao, R., Van Zee, R.D.: Porosity, powder X-Ray diffraction patterns, skeletal density, and thermal stability of NIST zeolitic reference materials RM 8850, RM 8851, and RM 8852. J. Res. Natl. Inst. Stan. (2021). https://doi.org/10.6028/jres.126.047

    Article  Google Scholar 

  30. Gomes Santiago, Rafaelle, B.F., dos Santos, I., Lima, G., Moura, K.O., Melo, D.C., Grava, W.M., Bastos-Neto, M., Pereira, S.M., de Lucena, and Diana Cristina Silva de Azevedo.: Investigation of premature aging of zeolites used in the drying of gas streams. Chem. Eng. Commun. 206(11), 1378–1385 (2019). https://doi.org/10.1080/00986445.2018.1533468

    Article  CAS  Google Scholar 

  31. Guisnet, M., Ribeiro, F.R.: Deactivation and Regeneration of Zeolite Catalysts. Catalytic Science Series, vol. 9. Imperial College Press, London (2011). https://doi.org/10.1142/p747

    Book  Google Scholar 

  32. Hastürk, E., Schlüsener, C., Quodbach, J., Schmitz, A., Janiak, C.: Shaping of metal-organic frameworks into mechanically stable monoliths with Poly(vinyl alcohol) by phase separation technique. Microporous Mesoporous Mater. 280, 277–287 (2019). https://doi.org/10.1016/j.micromeso.2019.02.011

    Article  CAS  Google Scholar 

  33. Hay, M.B., Stoliker, D.L., Davis, J.A., Zachara, J.M.: Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations. Water Resour. Res. (2011). https://doi.org/10.1029/2010WR010303

    Article  Google Scholar 

  34. Hutson, N.D., Hoekstra, M.J., Yang, R.T.: Control of microporosity of Al2O3-pillared clays: effect of pH, calcination temperature and clay cation exchange capacity. Microporous Mesoporous Mater. 28(3), 447–459 (1999). https://doi.org/10.1016/S1387-1811(98)00334-5

    Article  CAS  Google Scholar 

  35. Karim, M.R., Yeum, J.H.: In situ intercalative polymerization of conducting polypyrrole/montmorillonite nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 46(21), 2279–2285 (2008). https://doi.org/10.1002/polb.21559

    Article  CAS  Google Scholar 

  36. Kim, K.-M., Hyun-Taek, Oh., Lim, S.-J., Ho, K., Park, Y., Lee, C.-H.: Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. J. Chem. Eng. Data 61(4), 1547–1554 (2016). https://doi.org/10.1021/acs.jced.5b00927

    Article  CAS  Google Scholar 

  37. Kim, W., Choi, D., Kim, S.: Sonochemical synthesis of zeolite A from metakaolinite in NaOH solution. Mater. Trans. 51(9), 1694–1698 (2010). https://doi.org/10.2320/matertrans.M2010191

    Article  CAS  Google Scholar 

  38. Kocak, B., Pınarcı, İ, Güvenç, U., Kocak, Y.: Prediction of compressive strengths of pumice-and diatomite-containing cement mortars with artificial intelligence-based applications. Constr. Build. Mater. 385, 131516 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131516

    Article  Google Scholar 

  39. Krishna, R., van Baten, J.M.: Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials. Phys. Chem. Chem. Phys. 15, 7994–8016 (2013). https://doi.org/10.1039/c3cp50449b

    Article  CAS  PubMed  Google Scholar 

  40. Kuila, U., Prasad, M.: Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 61(2), 341–362 (2013). https://doi.org/10.1111/1365-2478.12028

    Article  Google Scholar 

  41. Kumar, A., Lingfa, P.: Sodium bentonite and kaolin clays: comparative study on their FT-IR, XRF, and XRD. Mater. Today 22, 737–742 (2020). https://doi.org/10.1016/j.matpr.2019.10.037

    Article  CAS  Google Scholar 

  42. Lahoti, M., Wong, K.K., Yang, E.H., Tan, K.H.: Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram. Int. 44(5), 5726–5734 (2018). https://doi.org/10.1016/j.ceramint.2017.12.226

    Article  CAS  Google Scholar 

  43. Lakiss, L., Gilson, J.P., Valtchev, V., Mintova, S., Vicente, A., Vimont, A., Bedard, R., Abdo, S., Bricker, J.: Zeolites in a good shape: catalyst forming by extrusion modifies their performances. Microporous Mesoporous Mater. 299, 110114 (2020). https://doi.org/10.1016/j.micromeso.2020.110114

    Article  CAS  Google Scholar 

  44. Liu, Y., Feng, Yi., Yao, J.: Recent advances in the direct fabrication of millimeter-sized hierarchical porous materials. RSC Adv. 6(84), 80840–80846 (2016). https://doi.org/10.1039/C6RA17018H

    Article  CAS  Google Scholar 

  45. Loiola, A.R., J. C. R. De A. Andrade, J. M. Sasaki, L. R. D. Da Silva, and E. J. Nassar.: Caracterização Termogravimétrica e Espectroscópica Das Propriedades Ácidas Da Zeólita ZSM-22. Ceramica 56(339), 250–254 (2010). https://doi.org/10.1590/s0366-69132010000300007

    Article  CAS  Google Scholar 

  46. Luan, H., Lei, C., Qinming, Wu., Sheng, Na., Wang, Y., Meng, X., Xiao, F.S.: Sustainable one-pot preparation of fully crystalline shaped zeolite catalysts. Catal. Sci. Technol. 11(16), 5650–5655 (2021). https://doi.org/10.1039/d1cy00948f

    Article  CAS  Google Scholar 

  47. Lucas, A.D., Sánchez, P., Fúnez, A., Ramos, M.J., Valverde, J.L.: Influence of clay binder on the liquid phase hydroisomerization of N-octane over palladium-containing zeolite catalysts. J. Mol. Catal. A 259(1–2), 259–266 (2006). https://doi.org/10.1016/j.molcata.2006.06.020

    Article  CAS  Google Scholar 

  48. Lucena, S.M.P., de, José Carlos A. Oliveira, Daniel V. Gonçalves, Lyssandra M.O. Lucas, Pedro A.S. Moura, Rafaelle G. Santiago, Diana C.S. Azevedo, and Moises Bastos-Neto.: LTA zeolite characterization based on pore type distribution. Ind. Eng. Chem. Res. 61(5), 2268–2279 (2022). https://doi.org/10.1021/acs.iecr.1c04897

    Article  CAS  Google Scholar 

  49. Lummus, J. L., Azar, J. J.: Drilling fluids optimization: a practical field approach. Penn Well Publishing Co. Pennwell Books,Tulsa, OK. https://openlibrary.org/books/OL2712086M/Drilling_fluids_optimization (1986)

  50. Maree, Z., Strydom, C.A., Bunt, J.R.: Chemical and physical characterization of spent coffee ground biochar treated by a wet oxidation method for the production of a coke substitute. Waste Manage. 113, 422–429 (2020). https://doi.org/10.1016/j.wasman.2020.06.025

    Article  CAS  Google Scholar 

  51. Markovic, S., Dondur, V., Dimitrijevic, R.: FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline. J. Mol. Struct. 654(1–3), 223–234 (2003). https://doi.org/10.1016/S0022-2860(03)00249-7

    Article  CAS  Google Scholar 

  52. McCusker, Ch., Baerlocher, L. B.: “Database of zeolite structures.” Structure Commission of the International Zeolite Association (IZA-SC). http://www.iza-structure.org/databases/%0A%0A (1996)

  53. Montanari, T., Busca, G.: On the densificationsm of adsorption and separation of CO2 on LTA zeolites: an IR investigation. Vib. Spectrosc. 46(1), 45–51 (2008). https://doi.org/10.1016/J.VIBSPEC.2007.09.001

    Article  CAS  Google Scholar 

  54. Moreira, J.C., Antunes, R.A., Santa, B., Miraglia, G.L., Soares, C., Riella, H.G.: Evaluation of different reaction systems to obtain zeolite 4A via reverse microemulsion. Microporous Mesoporous Mater. 279, 262–270 (2019). https://doi.org/10.1016/J.MICROMESO.2018.12.042

    Article  CAS  Google Scholar 

  55. Moura, P.A.S., Rodríguez-Aguado, E., Maia, D.A.S., Melo, D.C., Singh, R., Valencia, S., Webley, P.A., et al.: Water adsorption and hydrothermal stability of CHA zeolites with different Si/Al ratios and compensating cations. Catal. Today 390–391, 99–108 (2022). https://doi.org/10.1016/j.cattod.2021.11.042

    Article  CAS  Google Scholar 

  56. Nascimento, B.O., dos Santos, B.F., Maia, D.A.S., de Melo, D.C., Vilarrasa-Garcia, E., Antônio, E.B., Torres, M.-N., Azevedo, D.C.S.: Water adsorption in fresh and thermally aged zeolites: equilibrium and kinetics. Adsorption 27(7), 1043–1053 (2021). https://doi.org/10.1007/s10450-021-00331-x

    Article  CAS  Google Scholar 

  57. Nguyen, H.G.T., Espinal, L., van Zee, R.D., Thommes, M., Toman, B., Hudson, M.S.L., Mangano, E., et al.: A reference high-pressure CO2 adsorption isotherm for ammonium ZSM-5 zeolite: results of an interlaboratory study. Adsorption 24(6), 531–539 (2018). https://doi.org/10.1007/S10450-018-9958-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, J.W., Seo, G.: IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Appl. Catal. A 356(2), 180–188 (2009). https://doi.org/10.1016/J.APCATA.2009.01.001

    Article  CAS  Google Scholar 

  59. Rainer, D.N., Morris, R.E.: New avenues for mechanochemistry in zeolite science. Dalton Trans. 50(26), 8995–9009 (2021). https://doi.org/10.1039/D1DT01440D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rantitsch, G., Bhattacharyya, A., Günbati, A., Schulten, M.-A., Schenk, J., Letofsky-Papst, I., Albering, J.: Microstructural evolution of metallurgical coke: evidence from Raman spectroscopy. Int. J. Coal Geol. 227, 103546 (2020). https://doi.org/10.1016/j.coal.2020.103546

    Article  CAS  Google Scholar 

  61. Ren, J., Langmi, H.W., North, B.C., Mathe, M.: Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. (2015). https://doi.org/10.1002/er.3255

    Article  Google Scholar 

  62. Ren, X.Y., Cao, J.P., Zhao, S.X., Zhao, X.Y., Feng, X.B., Liu, T.L., Li, Y., Zhang, Ji., Wei, X.Y.: Insights into Coke location of catalyst deactivation during in-situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites. Appl. Catal. A 613, 118018 (2021). https://doi.org/10.1016/J.APCATA.2021.118018

    Article  CAS  Google Scholar 

  63. Rouquerol, J., Françoise Rouquerol, Philip Llewellyn, Guillaume Maurin, Kenneth S.W. Sing K. S. W.: Adsorption by powders and porous solids. In: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Second Edition. Elsevier, Amsterdam (2014)

  64. Saleh, T.A.: Structural characterization of hybrid materials. In: Polymer Hybrid Materials and Nanocomposites, pp. 213–240. Elsevier, Amsterdam (2021)

    Chapter  Google Scholar 

  65. Santos, K.M.C., Menezes, T.R., Oliveira, M.R., Silva, T.S.L., Santos, K.S., Barros, V.A., Melo, D.C., et al.: Natural gas dehydration by adsorption using mofs and silicas: a review. Sep. Purif. Technol. 276, 119409 (2021). https://doi.org/10.1016/j.seppur.2021.119409

    Article  CAS  Google Scholar 

  66. Shaban, M., Abukhadra, M.R., Shahien, M.G., Ibrahim, S.S.: Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes. Environ. Chem. Lett. 16(1), 275–280 (2018). https://doi.org/10.1007/S10311-017-0658-7

    Article  CAS  Google Scholar 

  67. Shang, J., Hanif, A., Li, G., Xiao, G., Liu, J.Z., Xiao, P., Webley, P.A.: Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification. Ind. Eng. Chem. Res. 59(16), 7857–7865 (2020). https://doi.org/10.1021/acs.iecr.0c00317

    Article  CAS  Google Scholar 

  68. Silva Magalhães, Margareth da, Bruna Figueiredo Cezar, Pedro Rodrigues Lustosa.: Influence of Brazilian fly ash fineness on the cementing efficiency factor, compressive strength and Young’s modulus of concrete. Dev. Built Environ. 14, 100147 (2023). https://doi.org/10.1016/j.dibe.2023.100147

    Article  Google Scholar 

  69. Singh, M.K., Singh, A.: Polymer and fiber characterization using X-ray diffraction. In: Characterization of Polymers and Fibres, pp. 153–185. Elsevier, Amsterdam (2022)

    Chapter  Google Scholar 

  70. Sugioka, K., Cheng, Ya.: A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam shaping and advanced focusing methods. Adv. Opt. Technol. 1(5), 353–364 (2012). https://doi.org/10.1515/aot-2012-0033

    Article  Google Scholar 

  71. Thakkar, H., Eastman, S., Hajari, A., Rownaghi, A.A., Knox, J.C., Rezaei, F.: 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces 8(41), 27753–27761 (2016). https://doi.org/10.1021/acsami.6b09647

    Article  CAS  PubMed  Google Scholar 

  72. Thomas, W.J., Crittenden, B.: Processes and cycles. In: Adsorption Technology & Design, pp. 96–134. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  73. Van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R.G., Catlow, C.R.A.: Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44(20), 7044–7111 (2015). https://doi.org/10.1039/C5CS00029G

    Article  PubMed  Google Scholar 

  74. Vilarrasa-García, E., Infantes-Molina, A., Moreno-Tost, R., Rodríguez-Castellón, E., Jiménez-López, A., Cavalcante, C.L., Azevedo, D.C.S.: Thiophene adsorption on microporous activated carbons impregnated with PdCl2. Energy Fuels 24(6), 3436–3442 (2010). https://doi.org/10.1021/ef901611k

    Article  CAS  Google Scholar 

  75. Vivas-Báez, J.C., Pirngruber, G.D., Servia, A., Dubreuil, A.C., Pérez-Martínez, D.J.: Impact of Feedstock Properties on the Deactivation of a Vacuum Gas Oil Hydrocracking Catalyst. Energy Fuels 35(15), 12297–12309 (2021). https://doi.org/10.1021/ACS.ENERGYFUELS.1C00965

    Article  Google Scholar 

  76. Vivas-Báez, J.C., Servia, A., Pirngruber, G.D., Dubreuil, A.C., Pérez-Martínez, D.J.: Insights in the Phenomena Involved in Deactivation of Industrial Hydrocracking Catalysts through an Accelerated Deactivation Protocol. Fuel 303(November), 120681 (2021). https://doi.org/10.1016/J.FUEL.2021.120681

    Article  Google Scholar 

  77. Wang, J., Guo, X.: Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020). https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  PubMed  Google Scholar 

  78. Weiß, M., Maurath, J., Willenbacher, N., Koos, E.: Shrinkage and dimensional accuracy of porous ceramics derived from capillary suspensions. J. Eur. Ceram. Soc. 39(5), 1887–1892 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.01.011

    Article  CAS  Google Scholar 

  79. Whiting, G.T., Meirer, F., Mertens, M.M., Bons, A.J., Weiss, B.M., Stevens, P.A., De Smit, E., Weckhuysen, B.M.: Binder effects in SiO2- and Al2O3-bound zeolite ZSM-5-based extrudates as studied by microspectroscopy. ChemCatChem 7(8), 1312–1321 (2015). https://doi.org/10.1002/cctc.201402897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, Q., Luan, H., Xiao, F.S.: Theoretical design for zeolite synthesis. Sci. China Chem. (2022). https://doi.org/10.1007/s11426-022-1307-5

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yu, S., Yan, J., Lin, W., Zhang, J., Long, J.: Characterization and cracking performance of zirconium-modified Y zeolite. Catal. Commun. 148, 106171 (2021). https://doi.org/10.1016/j.catcom.2020.106171

    Article  CAS  Google Scholar 

  82. Zhao, D., Liu, X.: Density functional calculation of H2 O/CO2/CH4 for oxygen-containing functional groups in coal molecules. ACS Omega (2022). https://doi.org/10.1021/acsomega.2c01278

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support from PETROBRAS and the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis—ANP, Brazil, through the Clause of Investments in Research, Development and Innovation in contracts for Exploration, Development and Production of Petroleum and Natural Gas. They also thank the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) process 402561/2007-4, Notice MCY/CNPq nº10/2007, the LEVM (Laboratório de Microscopia Vibracional) for XRD analysis, the Rezaei’s Group from Missouri S&T for the FTIR analysis and the Servicios Centrales de Apoyo a la Investigación from Universidad de Málaga for the XRF analysis. JDLM acknowledges the grant received from the CAPES-PrInt program (Process 88887.311867/2018-00) to fund international collaboration with Rezaei’s group.

Funding

This work has been financially supported by: PETROBRAS and the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis—ANP, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

DCM, MBN and DCSA contributed to conception and design of the study. JDLM, DSP, TMA performed all experiments under supervision of DASM, FR, MBN and DCSA. JDLM wrote the first draft of the manuscript. DASM, MBN and DCSA revised, edited and provided a formal analysis of the manuscript. DCSA, FR and MBN acquired and provided funds for the development of this work. All authors approved the submitted version.

Corresponding authors

Correspondence to Moisés Bastos-Neto or Diana C. S. de Azevedo.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, J.D.L., da S. Pereira, D., Azevedo, T.M. et al. Hydrothermal stability of Na-LTA shaped with clay binder. Adsorption (2023). https://doi.org/10.1007/s10450-023-00428-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-023-00428-5

Keywords

Navigation