Skip to main content
Log in

Elucidating the black-box nature of data-driven models in the adsorption of reactive red M-2BE on activated carbon and multi-walled carbon nanotubes through SHapley Additive exPlanations

  • Research
  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The removal of reactive red M-2BE dye textile from aqueous solution was performed using multi-walled carbon nanotubes (MWCN) and powdered activated carbon (PAC). Kinetic adsorption modeling has been performed using machine learning (ML) algorithms of artificial neural networks, adaptive-neuro fuzzy inference system (ANFIS), random forest, gradient boosting, and support vector machine. Although ML models are more accurate, they often fail to interpret the reasoning behind predictions. Therefore, the SHapley Additive exPlanations (SHAP) were used to understand the effect of each feature on the adsorption capacity. The ANFIS has presented the best statistical metrics with \(R=0.9993\), \(RMSE=0.0214\), and \(SAE=7.1172\). A higher adsorption capacity was observed for MWCN compared to PAC; while the first peaked at 300 mg L−1, the second approached 230 mg L−1. Temperature was found to have the smallest contribution in describing adsorption capacity. This novel application of ML with SHAP can provide important insights for adsorption researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data will be made available on request.

References

  1. Aria, M., Cuccurullo, C., Gnasso, A.: A comparison among interpretative proposals for random forests. Mach. Learn. Appl. 6, 100094 (2021). https://doi.org/10.1016/j.mlwa.2021.100094

    Article  Google Scholar 

  2. Assad, H., Fatma, I., Kumar, A., Kaya, S., Vo, D.-V.N., Al-Gheethi, A., Sharma, A.: An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. Chemosphere 298, 134221 (2022). https://doi.org/10.1016/j.chemosphere.2022.134221

    Article  CAS  PubMed  Google Scholar 

  3. Nogueira, I.B.R., Santana, V., Ribeiro, V., Ribeiro, A.M., Rodrigues, A.E.: Using scientific machine learning to develop universal differential equation for multicomponent adsorption separation systems. Can. J. Chem. Eng. 100, 2279–2290 (2022). https://doi.org/10.1002/cjce.24495

    Article  CAS  Google Scholar 

  4. Bierdel, M., Buchholz, S., Michele, V., Mleczko, L., Rudolf, R., Voetz, M., Wolf, A.: Industrial production of multiwalled carbon nanotubes. Phys. Stat. Sol. 244, 3939–3943 (2007). https://doi.org/10.1002/pssb.200776101

    Article  CAS  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  6. Cai, W., Wei, R., Xu, L., Ding, X.: A method for modelling greenhouse temperature using gradient boost decision tree. Inf. Process. Agric. 9, 343–354 (2022). https://doi.org/10.1016/j.inpa.2021.08.004

    Article  Google Scholar 

  7. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., Lopez, A.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020). https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  8. Chopra, S., Dhiman, G., Sharma, A., Shabaz, M., Shukla, P., Arora, M.: Taxonomy of adaptive neuro-fuzzy inference system in modern engineering sciences. Comput. Intell. Neurosci. 2021, 1–14 (2021). https://doi.org/10.1155/2021/6455592

    Article  Google Scholar 

  9. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  10. Diehl, M., Silva, L.F.O., Schnorr, C., Netto, M.S., Bruckmann, F.S., Dotto, G.L.: Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. Environ. Sci. Pollut. Res. 30, 51920–51931 (2023). https://doi.org/10.1007/s11356-023-26006-4

    Article  CAS  Google Scholar 

  11. Dil, E.A., Ghaedi, M., Ghezelbash, G.R., Asfaram, A., Ghaedi, A.M., Mehrabi, F.: Modeling and optimization of Hg 2+ ion biosorption by live yeast Yarrowia lipolytica 70562 from aqueous solutions under artificial neural network-genetic algorithm and response surface methodology: kinetic and equilibrium study. RSC Adv. 6, 54149–54161 (2016). https://doi.org/10.1039/C6RA11292G

    Article  CAS  Google Scholar 

  12. Dolatabadi, M., Mehrabpour, M., Esfandyari, M., Alidadi, H., Davoudi, M.: Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS. Chemom. Intell. Lab. Syst. 181, 72–78 (2018). https://doi.org/10.1016/j.chemolab.2018.07.012

    Article  CAS  Google Scholar 

  13. Dong, M., Guo, J., Wang, Y., Gai, X., Xiong, X., Zeng, J., Wang, Y., Wu, Y.: Humic acid non-covalent functionalized multi-walled carbon nanotubes composite membrane and its application for the removal of organic dyes. J. Environ. Chem. Eng. 10, 107320 (2022). https://doi.org/10.1016/j.jece.2022.107320

    Article  CAS  Google Scholar 

  14. Ekanayake, I.U., Meddage, D.P.P., Rathnayake, U.: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Stud. Constr. Mater. 16, e01059 (2022). https://doi.org/10.1016/j.cscm.2022.e01059

    Article  Google Scholar 

  15. Fan, M., Hu, J., Cao, R., Ruan, W., Wei, X.: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 200, 330–343 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.111

    Article  CAS  PubMed  Google Scholar 

  16. Gasparetto, H., de Castilhos, F., Salau, N.P.G.: Unveiling the generalization of the derivative order with a novel application of the fractional order model to green soybean oil extraction. Chem. Eng. Res. Design (2023). https://doi.org/10.1016/j.cherd.2023.02.038

    Article  Google Scholar 

  17. Gasparetto, H., de Castilhos, F., Salau, N.P.G.: Screening, experimental data, and robust kinetic modeling of vegetable oil extraction using p-cymene as a neoteric solvent for n-hexane replacement. J. Clean. Prod. 392, 136336 (2023). https://doi.org/10.1016/j.jclepro.2023.136336

    Article  CAS  Google Scholar 

  18. Gasparetto, H., Nunes, A.L.B., de Castilhos, F., Salau, N.P.G.: Soybean oil extraction using ethyl acetate and 1-butanol: from solvent selection to thermodynamic assessment. J. Ind. Eng. Chem. 113, 450–460 (2022). https://doi.org/10.1016/j.jiec.2022.06.020

    Article  CAS  Google Scholar 

  19. Genuer, R., Poggi, J.-M.: Random forests with R. Springer International Publishing, Cham (2020)

    Book  Google Scholar 

  20. Hafsa, N., Rushd, S., Al-Yaari, M., Rahman, M.: A generalized method for modeling the adsorption of heavy metals with machine learning algorithms. Water 12, 3490 (2020). https://doi.org/10.3390/w12123490

    Article  CAS  Google Scholar 

  21. Harja, M., Buema, G., Bucur, D.: Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 12, 6087 (2022). https://doi.org/10.1038/s41598-022-10093-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning. Springer, New York (2013)

    Book  Google Scholar 

  23. Kanjal, M.I., Muneer, M., Jamal, M.A., Bokhari, T.H., Wahid, A., Ullah, S., Amrane, A., Hadadi, A., Tahraoui, H., Mouni, L.: A study of treatment of reactive red 45 dye by advanced oxidation processes and toxicity evaluation using bioassays. Sustainability. 15, 7256 (2023). https://doi.org/10.3390/su15097256

    Article  CAS  Google Scholar 

  24. Khan, F.S.A., Mubarak, N.M., Tan, Y.H., Khalid, M., Karri, R.R., Walvekar, R., Abdullah, E.C., Nizamuddin, S., Mazari, S.A.: A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J. Hazard. Mater. 413, 125375 (2021). https://doi.org/10.1016/j.jhazmat.2021.125375

    Article  CAS  PubMed  Google Scholar 

  25. Kim, Y.-W., Kim, J.-H., Moon, D.H., Shin, H.-J.: Adsorption and precipitation of anionic dye Reactive Red 120 from aqueous solution by aminopropyl functionalized magnesium phyllosilicate. Korean J. Chem. Eng. 36, 101–108 (2019). https://doi.org/10.1007/s11814-018-0168-8

    Article  CAS  Google Scholar 

  26. Lawrence, R.: Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens. Environ. 90, 331–336 (2004). https://doi.org/10.1016/j.rse.2004.01.007

    Article  Google Scholar 

  27. Li, Z., Sellaoui, L., Dotto, G.L., Lamine, A.B., Bonilla-Petriciolet, A., Hanafy, H., Belmabrouk, H., Netto, M.S., Erto, A.: Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model. J. Mol. Liq. 285, 165–170 (2019). https://doi.org/10.1016/j.molliq.2019.04.091

    Article  CAS  Google Scholar 

  28. Machado, F.M., Bergmann, C.P., Fernandes, T.H.M., Lima, E.C., Royer, B., Calvete, T., Fagan, S.B.: Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 192, 1122–1131 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  29. Maulana Kusdhany, M.I., Lyth, S.M.: New insights into hydrogen uptake on porous carbon materials via explainable machine learning. Carbon 179, 190–201 (2021). https://doi.org/10.1016/j.carbon.2021.04.036

    Article  CAS  Google Scholar 

  30. McDonald, G., García-Pedrajas, N., Macdonald, C., Ounis, I.: A Study of SVM kernel functions for sensitivity classification ensembles with POS sequences. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. pp. 1097–1100. ACM, Shinjuku Tokyo Japan (2017)

  31. Nascimento, V.X., Pinto, D., Lütke, S.F., Da Silva, M.C.F., Machado, F.M., Lima, É.C., Silva, L.F.O., Dotto, G.L.: Brilliant blue FCF dye adsorption using magnetic activated carbon from Sapelli wood sawdust. Environ. Sci. Pollut. Res. 30, 58684–58696 (2023). https://doi.org/10.1007/s11356-023-26646-6

    Article  CAS  Google Scholar 

  32. Netto, M.S., Oliveira, J.S., Salau, N.P.G., Dotto, G.L.: Analysis of adsorption isotherms of Ag+, Co+2, and Cu+2 onto zeolites using computational intelligence models. J. Environ. Chem. Eng. 9, 104960 (2021). https://doi.org/10.1016/j.jece.2020.104960

    Article  CAS  Google Scholar 

  33. Oliveira, L.M.C., Dias, R., Rebello, C.M., Martins, M.A.F., Rodrigues, A.E., Ribeiro, A.M., Nogueira, I.B.R.: Artificial intelligence and cyber-physical systems: a review and perspectives for the future in the chemical industry. AI 2, 429–443 (2021). https://doi.org/10.3390/ai2030027

    Article  Google Scholar 

  34. Onsree, T., Tippayawong, N., Phithakkitnukoon, S., Lauterbach, J.: Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass. Energy 249, 123676 (2022). https://doi.org/10.1016/j.energy.2022.123676

    Article  Google Scholar 

  35. Pang, X., Sellaoui, L., Franco, D., Dotto, G.L., Georgin, J., Bajahzar, A., Belmabrouk, H., Ben Lamine, A., Bonilla-Petriciolet, A., Li, Z.: Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem. Eng. J. 378, 122101 (2019). https://doi.org/10.1016/j.cej.2019.122101

    Article  CAS  Google Scholar 

  36. Pauletto, P.S., Gonçalves, J.O., Pinto, L.A.A., Dotto, G.L., Salau, N.P.G.: Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J. Colloid Interface Sci. 560, 722–729 (2020). https://doi.org/10.1016/j.jcis.2019.10.106

    Article  CAS  PubMed  Google Scholar 

  37. Pauletto, P.S., Lütke, S.F., Dotto, G.L., Salau, N.P.G.: Forecasting the multicomponent adsorption of nimesulide and paracetamol through artificial neural network. Chem. Eng. J. 412, 127527 (2021). https://doi.org/10.1016/j.cej.2020.127527

    Article  CAS  Google Scholar 

  38. Piazzi Fuhr, A.C.F., Vieira, Y., Kuhn, R.C., Salau, N.P.G.: Selective adsorption processes for fructooligosaccharides separation by activated carbon and zeolites through machine learning. Chem. Eng. Res. Design 190, 379–394 (2023). https://doi.org/10.1016/j.cherd.2022.12.041

    Article  CAS  Google Scholar 

  39. Rápó, E., Tonk, S.: Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules 26, 5419 (2021). https://doi.org/10.3390/molecules26175419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ravindiran, G., Saravanan, P., Alagumalai, A., Subbarayan, S.: Soft computing-based models and decolorization of Reactive Yellow 81 using Ulva Prolifera biochar. Chemosphere 287, 132368 (2022). https://doi.org/10.1016/j.chemosphere.2021.132368

    Article  CAS  PubMed  Google Scholar 

  41. Rebello, C.M., Marrocos, P.H., Costa, E.A., Santana, V.V., Rodrigues, A.E., Ribeiro, A.M., Nogueira, I.B.R.: Machine learning-based dynamic modeling for process engineering applications: a guideline for simulation and prediction from perceptron to deep learning. Processes 10, 250 (2022). https://doi.org/10.3390/pr10020250

    Article  CAS  Google Scholar 

  42. Rego, A.S.C., Valim, I.C., Vieira, A.A.S., Vilani, C., Santos, B.F.: Optimization of sugarcane bagasse pretreatment using alkaline hydrogen peroxide through ANN and ANFIS modelling. Biores. Technol. 267, 634–641 (2018). https://doi.org/10.1016/j.biortech.2018.07.087

    Article  CAS  Google Scholar 

  43. Rodrigues, F.K., Salau, N.P.G., Dotto, G.L.: New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der Waals equation. Sep. Purif. Technol. 224, 290–294 (2019). https://doi.org/10.1016/j.seppur.2019.05.042

    Article  CAS  Google Scholar 

  44. Sellaoui, L., Dotto, G.L., Peres, E.C., Benguerba, Y., Lima, É.C., Lamine, A.B., Erto, A.: New insights into the adsorption of crystal violet dye on functionalized multi-walled carbon nanotubes: experiments, statistical physics and COSMO–RS models application. J. Mol. Liq. 248, 890–897 (2017). https://doi.org/10.1016/j.molliq.2017.10.124

    Article  CAS  Google Scholar 

  45. Souza, P.R., Dotto, G.L., Salau, N.P.G.: Artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) modelling for nickel adsorption onto agro-wastes and commercial activated carbon. J. Environ. Chem. Eng. 6, 7152–7160 (2018). https://doi.org/10.1016/j.jece.2018.11.013

    Article  CAS  Google Scholar 

  46. Teixeira, R.A., Lima, E.C., Benetti, A.D., Thue, P.S., Cunha, M.R., Cimirro, N.F.G.M., Sher, F., Dehghani, M.H., dos Reis, G.S., Dotto, G.L.: Preparation of hybrids of wood sawdust with 3-aminopropyl-triethoxysilane: application as an adsorbent to remove Reactive Blue 4 dye from wastewater effluents. J. Taiwan Inst. Chem. Eng. 125, 141–152 (2021). https://doi.org/10.1016/j.jtice.2021.06.007

    Article  CAS  Google Scholar 

  47. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49, 1225–1231 (1996). https://doi.org/10.1016/S0895-4356(96)00002-9

    Article  CAS  PubMed  Google Scholar 

  48. Ullah, Z., Khan, M., Raza Naqvi, S., Farooq, W., Yang, H., Wang, S., Vo, D.-V.N.: A comparative study of machine learning methods for bio-oil yield prediction—a genetic algorithm-based features selection. Biores. Technol. 335, 125292 (2021). https://doi.org/10.1016/j.biortech.2021.125292

    Article  CAS  Google Scholar 

  49. Vieira, Y., Schnorr, C., Piazzi, A.C., Netto, M.S., Piccini, W.M., Franco, D.S.P., Mallmann, E.S., Georgin, J., Silva, L.F.O., Dotto, G.L.: An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon. J. Mol. Liq. 361, 119639 (2022). https://doi.org/10.1016/j.molliq.2022.119639

    Article  CAS  Google Scholar 

  50. Wamba, A.G.N., Lima, E.C., Ndi, S.K., Thue, P.S., Kayem, J.G., Rodembusch, F.S., dos Reis, G.S., de Alencar, W.S.: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of Brilliant Green 1 and Reactive Black 5 from aqueous solutions. Environ. Sci. Pollut. Res. 24, 21807–21820 (2017). https://doi.org/10.1007/s11356-017-9825-4

    Article  CAS  Google Scholar 

  51. Wang, P., Wang, X., Yu, S., Zou, Y., Wang, J., Chen, Z., Alharbi, N.S., Alsaedi, A., Hayat, T., Chen, Y., Wang, X.: Silica coated Fe 3 O 4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem. Eng. J. 306, 280–288 (2016). https://doi.org/10.1016/j.cej.2016.07.068

    Article  CAS  Google Scholar 

  52. Westreich, D., Lessler, J., Funk, M.J.: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J. Clin. Epidemiol. 63, 826–833 (2010). https://doi.org/10.1016/j.jclinepi.2009.11.020

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yadav, S., Yadav, A., Bagotia, N., Sharma, N., Sharma, A.K., Kumar, S.: Simultaneous adsorption of three anionic dyes at neutral pH from their individual and multi-component systems on a CTAB modified Pennisetum glaucum based carbon nanotube green composite: adsorption mechanism and process optimization by Box-Behnken design model. J. Mol. Liq. 358, 119223 (2022). https://doi.org/10.1016/j.molliq.2022.119223

    Article  CAS  Google Scholar 

  54. Yazidi, A., Sellaoui, L., Dotto, G.L., Bonilla-Petriciolet, A., Fröhlich, A.C., Lamine, A.B.: Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models. J. Mol. Liq. 283, 276–286 (2019). https://doi.org/10.1016/j.molliq.2019.03.101

    Article  CAS  Google Scholar 

  55. Zhou, J., Li, E., Wei, H., Li, C., Qiao, Q., Armaghani, D.J.: Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci. 9, 1621 (2019). https://doi.org/10.3390/app9081621

    Article  Google Scholar 

  56. Zhu, M.-X., Lee, L., Wang, H.-H., Wang, Z.: Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 149, 735–741 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.037

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial assistance from CAPES, CNPq, and FAPERGS. The authors also acknowledge the financial support from ANP-PRH 52.1.

Author information

Authors and Affiliations

Authors

Contributions

HG: conceptualization, methodology, software, validation, formal analysis, writing—original draft. NPGS: conceptualization, resources, writing—review and editing, supervision, funding acquisition. FMM: investigation, writing—review and editing. ÉCL: resources, supervision, writing—review and editing. GLD: resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Nina Paula Gonçalves Salau.

Ethics declarations

Competing interests

The authors report no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 393 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparetto, H., Lima, É.C., Machado, F.M. et al. Elucidating the black-box nature of data-driven models in the adsorption of reactive red M-2BE on activated carbon and multi-walled carbon nanotubes through SHapley Additive exPlanations. Adsorption (2023). https://doi.org/10.1007/s10450-023-00420-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-023-00420-z

Keywords

Navigation