Skip to main content
Log in

Improved kernel of nitrogen isotherms for γ-alumina characterization

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We present a new kernel of N2 isotherms in γ-alumina, the metastable phase of α-alumina, most used in industrial applications. The dedicated kernel proposal, existing in the literature, uses cylindrical pores, as well as approximate kernels of commercial adsorption characterization equipment. TEM morphology studies of γ-alumina have shown that the material has slit-like pores rather than cylindrical pores. Thus, our kernel is based on a slit pore collection of N2 isotherms at 77 K with 10 different pores sizes, dedicated to the characterization of the micropore range. The isotherms were calculated by applying the Monte Carlo method in the grand canonical ensemble. The solid–fluid interaction parameters were validated in an α-alumina surface. The agreement between experimental and simulated isotherms, using our kernel, is superior to that obtained with cylindrical pores, confirming the experimental evidence on the nature of γ-alumina morphology. Two γ-alumina samples are investigated and we observe that 12 to 22% of the total volume consists of micropores that are not adequately characterized with approximate cylindrical kernels. We also propose an alternative approach to match the different PSDs obtained, based on hybrid kernels methodology of hierarchical adsorbents materials characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that all relevant data are included in the article.

References

  1. Bruschi, L., Mistura, G., Phadungbut, P., Do, D.D., Nicholson, D., Mayamei, Y., Lee, W.: Adsorption on ordered and disordered duplex layers of porous anodic alumina. Langmuir 31, 4895–4905 (2015). https://doi.org/10.1021/acs.langmuir.5b00716

    Article  CAS  PubMed  Google Scholar 

  2. Bruschi, L., Mistura, G., Negri, F., Coasne, B., Mayameie, Y., Lee, W.: Adsorption on alumina nanopores with conical shape. Nanoscale 10, 18300–18305 (2018). https://doi.org/10.1039/C8NR06265J

    Article  CAS  PubMed  Google Scholar 

  3. Cascarini de Torre, L.E., Flores, E.S., Llanos, J.L., Bottani, E.J.: Gas-solid potentials for N2, O2, and CO2 adsorbed on graphite, amorphous carbons, AI2O3, and TiO2. Langmuir 11, 4742–4747 (1995). https://doi.org/10.1021/la00012a027

    Article  Google Scholar 

  4. Čejka, J., Žilková, N., Rathouský, J., Zukal, A.: Nitrogen adsorption study of organised mesoporous alumina. Phys. Chem. Chem. Phys. 3, 5076–5081 (2001). https://doi.org/10.1039/b105603b

    Article  CAS  Google Scholar 

  5. Chenoweth, K., Van Duin, A.C.T., Goddard, W.A.: ReaxFF Reactive Force Field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. 112, 1040–1053 (2008). https://doi.org/10.1021/jp709896w

    Article  CAS  Google Scholar 

  6. Cychosz, K.A., Guillet-Nicolas, R., Garcıa-Martınez, J., Thommes, M.: Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 46, 389–414 (2017). https://doi.org/10.1039/C6CS00391E

    Article  CAS  PubMed  Google Scholar 

  7. Cychosz, K.A., Thommes, M.: Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4, 559–566 (2018). https://doi.org/10.1016/j.eng.2018.06.001

    Article  CAS  Google Scholar 

  8. Davies, G.M., Seaton, N.A.: Development and validation of pore structure models for adsorption in activated carbons. Langmuir 15, 6263–6276 (1999)

    Article  CAS  Google Scholar 

  9. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: Raspa: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016). https://doi.org/10.1080/08927022.2015.1010082

    Article  CAS  Google Scholar 

  10. Figueroa-Gerstenmaier, S., Vega, L.F., Blas, F.J., Gubbins, K.E.: Molecular model of gamma-alumina: nitrogen adsorption and pore size distribution. AIChE Symp. Ser. 97, 317–320 (2001)

    Google Scholar 

  11. Gonçalves, D.V., Paiva, M.A.G., Oliveira, J.C.A., Bastos-Neto, M., Lucena, S.M.P.: Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids Surf. A 559, 342–350 (2018). https://doi.org/10.1016/j.colsurfa.2018.09.082

    Article  CAS  Google Scholar 

  12. Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583–1590 (2012). https://doi.org/10.1016/j.carbon.2011.11.037

    Article  CAS  Google Scholar 

  13. Hu, Y.Z., Luo, L.L., Shen, H.H., Hu, S.L., Tan, Z.Y., Long, X.X.: Interfacial properties of multilayer graphene and α-alumina: experiments and simulations. Ceram. Int. 48, 12056–12064 (2022). https://doi.org/10.1016/j.ceramint.2022.01.064

    Article  CAS  Google Scholar 

  14. Huang, B., Bartholomew, C.H., Smith, S.J., Woodfield, B.F.: Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures. Microporous Mesoporous Mater. 165, 70–78 (2013). https://doi.org/10.1016/j.micromeso.2012.07.052

    Article  CAS  Google Scholar 

  15. Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon 91, 330–337 (2015). https://doi.org/10.1016/j.carbon.2015.05.004

    Article  CAS  Google Scholar 

  16. Jbara, A.S., Othaman, Z., Ati, A.A., Saeed, M.A.: Characterization of γ-Al2O3 nanopowders synthesized by co-precipitation method. Mater. Chem. Phys. 188, 24–29 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.015

    Article  CAS  Google Scholar 

  17. Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995–2012 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02581.x

    Article  CAS  Google Scholar 

  18. Liu, S., Wehmschulte, R.J., Burba, C.M.: Synthesis of novel nanostructured γ-Al2O3 by pyrolysis of aluminiumoxyhydride–HAlO. J. Mater. Chem. 13, 3107–3111 (2003). https://doi.org/10.1039/B307029H

    Article  CAS  Google Scholar 

  19. Lucena, S.M.P., Gomes, V.A., Gonçalves, D.V., Mileo, P.G.M., Silvino, P.F.G.: Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. Carbon NY 61, 624–632 (2013). https://doi.org/10.1016/j.carbon.2013.05.046

    Article  CAS  Google Scholar 

  20. Lucena, S.M.P., Snurr, R.Q., Cavalcante, C.L., Jr.: Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Microporous Mesoporous Mater. 111, 89–96 (2008). https://doi.org/10.1016/j.micromeso.2007.07.021

    Article  CAS  Google Scholar 

  21. Menezes, R.L.C.B., Moura, K.O., Lucena, S.M.P., Azevedo, D.C.S., Bastos-Neto, M.: Insights on the mechanisms of H2S retention at low concentration on impregnated carbons. Ind. Eng. Chem. Res. 57, 2248–2257 (2018). https://doi.org/10.1021/acs.iecr.7b03402

    Article  CAS  Google Scholar 

  22. Munhoz, A.H., Jr., Da Silva, H.S., Yamamoto, M.V., Masson, T.J., de Oliveira, M.O., De Miranda, L.F., Andrades, R.C., Peres, R.M.: Alpha-alumina synthesis. Mater. Sci. Forum 912, 27–32 (2017). https://doi.org/10.4028/www.scientific.net/MSF.912.27

    Article  Google Scholar 

  23. Newnham, R.E., De Haan, Y.M.: Refinement of the α Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Zeitschrift Fur Krist. New Cryst. Struct. 117, 235–237 (1962). https://doi.org/10.1524/zkri.1962.117.2-3.235

    Article  CAS  Google Scholar 

  24. de Oliveira, J.C.A., Galdino, A.L., Gonçalves, D.V., Silvino, P.F.G., Cavalcante, C.L., Bastos-Neto, M., Azevedo, D.C.S., Lucena, S.M.P.: Representative pores: an efficient method to characterize activated carbons. Front. Chem. 8, 595230 (2021). https://doi.org/10.3389/fchem.2020.595230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  26. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by powders and porous solids principles. In: Methodology and Applications. Elsevier, Amsterdam (2014)

    Google Scholar 

  27. Saber, O.: Novel self assembly behavior for γ-alumina nanoparticles. Particuology 10, 744–750 (2012). https://doi.org/10.1016/j.partic.2012.03.008

    Article  CAS  Google Scholar 

  28. Sharma, P., Varadan, V.V., Varadan, V.K.: A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area. J. Eur. Ceram. Soc. 23, 659–666 (2003). https://doi.org/10.1016/S0955-2219(02)00191-7

    Article  CAS  Google Scholar 

  29. Thommes, M., Cychosz, K.A.: Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20, 233–250 (2014). https://doi.org/10.1007/s10450-014-9606-z

    Article  CAS  Google Scholar 

  30. Verwey, E.J.W.: The Structure of the electrolytical oxide layer on aluminium. Zeitschrift Für Krist. - Cryst. Mater. 91, 317–320 (1935). https://doi.org/10.1524/zkri.1935.91.1.317

    Article  CAS  Google Scholar 

  31. Yelpo, V., Cornette, V., Toso, J.P., López, R.H.: Characterization of nanostructured carbon CMK-3 by means of Monte Carlo simulations. Carbon 121, 106–113 (2017). https://doi.org/10.1016/j.carbon.2017.05.085.7

    Article  CAS  Google Scholar 

  32. Zhang, X., Liu, D., Xu, D., Asahina, S., Cychosz, K.A., Agrawal, K.V., Al Wahedi, Y., Bhan, A., Al Hashimi, S., Terasaki, O., Thommes, M., Tsapatsis, M.: Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336, 1684–1687 (2012). https://doi.org/10.1126/science.1221111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support for this study from PNPD/CAPES (88882.463158/2019-01) and the use of the computer cluster at National Laboratory of Scientific Computing (LNCC/MCTI, Brazil).

Funding

The authors wish to acknowledge financial support for this study from PNPD/CAPES (88882.463158/2019–01).

Author information

Authors and Affiliations

Authors

Contributions

All authors assisted in the development and writing of the paper. DG, DM and SL: wrote the main manuscript text. DG, DM, JO and SL: were involved in conceptualization, methodology and doing simulations. MB-N, JV-R and KS: performed experiments. D.S. worked on reviewing and editing the manuscript. All authors reviewed the entire manuscript.

Corresponding author

Correspondence to Daniel V. Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, D.V., Montenegro, D.L., Oliveira, J.C.A. et al. Improved kernel of nitrogen isotherms for γ-alumina characterization. Adsorption 29, 377–386 (2023). https://doi.org/10.1007/s10450-023-00409-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00409-8

Keywords

Navigation