Skip to main content
Log in

Microporosity and nanostructure of activated carbons: characterization by X-ray diffraction and scattering, Raman spectroscopy and transmission electron microscopy

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Microporosity and structure of a set of activated carbons was studied by combination of N2 and CO2 adsorption, Transmission Electron Microscopy (TEM), X-ray diffraction and scattering and multiwavelength Raman spectroscopy. It is shown that correlations between measured parameteres may be established for a given set of activated carbons, most often obtained from a same precursor. Comparison of results of TEM images processing and of Small-angle scattering with adsorption data suggests that super-micropores (0.7–2 nm) are highly variable in shape and strongly deviate from the ideal slit pore model. These pores are likely located in between disordered continuous graphene stacks. It is shown that Small-angle scattering is mostly caused by supermicropores; contribution of other types of porosity is of secondary importance. For a set of carbons with similar structure, a reasonable correlation between Guinier radii and pore width obtained from N2 adsorption can be found; however, the reason for the observed offset between the data sets remain uncertain. Sensitivity of the Raman scattering to atomic scale processes leads to poor or unclear correlations between the spectroscopic and structural data, although some notable exceptions are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. In: Cadenhead, D.A. (ed.) Progress in surface and membrane science, pp. 1–70. Academic Press, New York (1975)

    Google Scholar 

  2. Dubinin, M.M.: Fundamentals of the theory of adsorption in carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon 27, 457–467 (1989)

    Article  CAS  Google Scholar 

  3. Ustinov, E.A., Do, D.D.: Application of density functional theory to analysis of energetic heterogeneity and pore size distribution of activated carbons. Langmuir 20, 3791–3797 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Gregg, S.J., Sing, K.S.W.: Adsorption, surface area and porosity. Academic Press, London (1982)

    Google Scholar 

  5. Pré, P., Huchet, G., Jeulin, D., Rouzaud, J.N., Sennour, M., Thorel, A.: A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy. Carbon 52, 239–258 (2013)

    Article  Google Scholar 

  6. Leyssale, J.-M., Da Costa, J.-P., Germain, C., Weisbecker, P., Vignoles, G.L.: Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images. Carbon 50, 4388–4400 (2012)

    Article  CAS  Google Scholar 

  7. Tsivadze, AYu., Guryanov, V.V., Petukhova, G.A.: Preparation of spherical activated carbon from furfural, its properties and prospective applications in medicine and the national economy. Prot. Metals Phys. Chem. Surf. 47(5), 612–620 (2011)

    Article  CAS  Google Scholar 

  8. Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)

    Article  CAS  Google Scholar 

  9. Atkinson, D., McLeod, A.I., Sing, K.S.W.: Adsorptive properties of microporous carbons: primary and secondary micropore filling. J. Chim. Phys. 81, 791–794 (1984)

    Article  CAS  Google Scholar 

  10. Jagiello, J., Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113(45), 19382–19385 (2009)

    Article  CAS  Google Scholar 

  11. Kratky, O.: Instrumentation experimental technique, slit collimation. In: Glatter, O., Kratky, O. (eds.) Small angle X-ray scattering, pp. 53–84. Academic Press, New York (1982)

    Google Scholar 

  12. Lake, J.A.: An iterative method of slit-correcting small-angle X-ray data. Acta. Cryst. 23, 191–194 (1967)

    Article  CAS  Google Scholar 

  13. Shiryaev, A.A., Voloshchuk, A.M., Volkov, V.V., Averin, A.A., Artamonova, S.D.: Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption. J. Phys.: Conf. Ser. 848, 012009 (2017). https://doi.org/10.1088/1742-6596/848/1/012009

    Article  CAS  Google Scholar 

  14. Vartapetian, RSh., Khozina, E.V.: Structure of rigid and swelling adsorbents according to pulsed NMR data on the mobility of adsorbed water and benzene molecules. Colloid J. 68(1), 1–19 (2006)

    Article  Google Scholar 

  15. Khomich, A.A., Kudryavtsev, O.S., Dolenko, T.A., Shiryaev, A.A., Fisenko, A.V., Konov, V.I., Vlasov, I.I.: Anomalous enhancement of nanodiamond luminescence on heating. Laser Phys. Lett. 14(2), 025702 (2017). https://doi.org/10.1088/1612-202X/aa52f5

    Article  Google Scholar 

  16. Maturilli, A., Shiryaev, A.A., Kulakova, I.I., Helbert, J.: Infra-red reflectance and emissivity spectra of nanodiamonds. Spectrosc. Lett. 47(6), 446–450 (2014)

    Article  CAS  Google Scholar 

  17. Dmowski, W., Contescu, C.I., Llobet, A., Gallego, N.G., Egami, T.: Local atomic density of microporous carbons. J. Phys. Chem. C 116, 2946–2951 (2012)

    Article  CAS  Google Scholar 

  18. Fujimoto, H.: Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon 41, 1585–1592 (2003)

    Article  CAS  Google Scholar 

  19. Rutman, A.M., Skakov, Yu.A.: Radial distribution functions of atoms and interference functions of partly ordered carbon materials. I. Influence of edge atoms of disperse layers. Sov. Phys. Cryst. 34(3), 338–341 (1989)

    Google Scholar 

  20. Puech, P., Dabrowska, A., Ratel-Ramond, N., Vignoles, G.L., Monthioux, M.: New insight on carbonisation and graphitisation mechanisms as obtained from a bottom-up analytical approach of X-ray diffraction patterns. Carbon 147, 602–611 (2019)

    Article  CAS  Google Scholar 

  21. Ruland, W., Smarsly, B.: X-ray scattering of non-graphitic carbons: an improved method of evaluation. J. Appl. Cryst. 35, 624–633 (2002)

    Article  CAS  Google Scholar 

  22. Men’shchikov, I.E., Shiryaev, A.A., Shkolin, A.V., Visotskii, V.V., Khozina, E.V., Fomkin, A.A.: Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption. Korean J. Chem. Eng. 38(2), 276–291 (2021)

    Article  Google Scholar 

  23. Leyssale, J.M., Vignoles, G.L.: A large-scale molecular dynamics study of the divacancy defect in graphene. J. Phys. Chem. C 118(15), 8200–8216 (2014)

    Article  CAS  Google Scholar 

  24. Allen, C.S., Ghamouss, F., Boujibar, O., Harris, P.J.F.: Aberration-corrected transmission electron microscopy of a non-graphitizing carbon. Proc. R. Soc. A 578, 20210580 (2022)

    Article  Google Scholar 

  25. Guo, J., Morris, J.R., Ihm, Y., Contescu, C.I., Gallego, N.C., Duscher, G., Pennycook, S.J., Chisholm, M.F.: Topological defects: origin of nanopores and enhanced adsorption performance in nanoporous carbon. Small 8(21), 3283–3288 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Fourdeux, A., Herinckx, C., Perret, R., Ruland, W.: La structure des fibres de carbone. C.R. Acad. Sci. Paris C 269, 1597–1600 (1969)

    CAS  Google Scholar 

  27. Ruland, W.: Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J. Appl. Cryst. 4, 70–73 (1971)

    Article  Google Scholar 

  28. Men’shchikov, I.E., Shkolin, A., Strizhenov, E., Khozina, E., Chugaev, S., Shiryaev, A., Fomkin, A., Zherdev, A.: Thermodynamic behaviors of adsorbed methane storage systems based on nanoporous carbon adsorbents prepared from coconut shells. Nanomaterials 10, 2243 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 64, 075414 (2001)

    Article  Google Scholar 

  30. Merlen, A., Buijnsters, J.G., Pardanaud, C.: A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: from graphene to amorphous carbons. Coatings 7, 153 (2017)

    Article  Google Scholar 

  31. Smith, M.W., Dallmeyer, I., Johnson, T.J., Brauer, C.S., McEwen, J.-S., Espinale, J.F., Garcia-Perez, M.: Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles. Carbon 100, 678–692 (2016)

    Article  CAS  Google Scholar 

  32. Pardanaud, C., Giacometti, G., Martin, C., Ruffe, R., Angot, T., Aréou, E., Pégourié, B., Tsitrone, E., Dittmar, T., Hopf, C., Jacob, W., Schwarz-Selinger, T., Roubin, P.: Raman study of CFC tiles extracted from the toroidal pump limiter of Tore Supra. J. Nucl. Mat. 415(1), S254–S257 (2011)

    Article  CAS  Google Scholar 

  33. Pardanaud, C., Martin, C., Roubin, P.: Multiwavelength Raman spectroscopy analysis of a large sampling ofdisordered carbons extracted from the Tore Supra tokamak. Vib. Spectrosc. 70, 187–192 (2014)

    Article  CAS  Google Scholar 

  34. Quirico, E., Orthous-Daunay, F.-R., Beck, P., Bonal, L., Brunetto, R., Dartois, E., Pino, T., Montagnac, G., Rouzaud, J.-N., Engrand, C., Duprat, J.: Origin of insoluble organic matter in type 1 and 2 chondrites: new clues, new questions. Geochim. Cosmochim. Acta 136, 80–99 (2014)

    Article  CAS  Google Scholar 

  35. Gouadec, G., Colomban, P.: Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We highly appreciate important contribution of Dr. A. Shkolin in discussion of NLDFT data. Comments of two anonymous reviewers helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Shiryaev.

Ethics declarations

Conflict of interest

The authors declare absence of conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaev, A.A., Pré, P., Pardanaud, C. et al. Microporosity and nanostructure of activated carbons: characterization by X-ray diffraction and scattering, Raman spectroscopy and transmission electron microscopy. Adsorption 29, 275–289 (2023). https://doi.org/10.1007/s10450-023-00406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00406-x

Keywords

Navigation