Skip to main content
Log in

Estimation of isosteric heat of adsorption from generalized Langmuir isotherm

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Simulation and design of adsorptive separation units demand accurate estimation of thermodynamic properties. Isosteric heat of adsorption as calculated from generalized Langmuir (gL) isotherm coupled with Clausius–Clapeyron expression for pure component and mixed-gas adsorption equilibria is presented in this work. The estimated isosteric heat of adsorption as functions of surface loading and composition is validated against the experimental data for various adsorption systems. Furthermore, the gL results are compared against classical Langmuir (cL) and Toth isotherm for pure components and with Ideal Adsorbed Solution Theory (IAST) for mixed-gas adsorption equilibria. The comparison highlights that gL outperforms cL and Toth for pure component adsorption and IAST for mixed-gas adsorption, and gL reliably captures the loading dependence and the composition dependence for isosteric heat of adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang, R.T.: Gas Separation by Adsorption Processes. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  2. Sundaram, N., Yang, R.T.: Isosteric heats of adsorption from gas mixtures. J. Colloid Interface Sci. 198(2), 378–388 (1998). https://doi.org/10.1006/jcis.1997.5300

    Article  CAS  Google Scholar 

  3. Sees, M.D., Kirkes, T., Chen, C.-C.: A simple and practical process modeling methodology for pressure swing adsorption. Comput. Chem. Eng. 147, 107235 (2021). https://doi.org/10.1016/j.compchemeng.2021.107235

    Article  CAS  Google Scholar 

  4. Sircar, S.: Role of adsorbent heterogeneity on mixed gas adsorption. Ind. Eng. Chem. Res. 30(5), 1032–1039 (1991). https://doi.org/10.1021/ie00053a027

    Article  CAS  Google Scholar 

  5. Shen, D., Bülow, M., Siperstein, F., Engelhard, M., Myers, A.L.: Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6(4), 275–286 (2000)

    Article  CAS  Google Scholar 

  6. Dunne, J.A., Mariwala, R., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on Silicalite. Langmuir 12(24), 5888–5895 (1996). https://doi.org/10.1021/la960495z

    Article  CAS  Google Scholar 

  7. Sircar, S., Mohr, R., Ristic, C., Rao, M.B.: Isosteric heat of adsorption: theory and experiment. J. Phys. Chem. B 103(31), 6539–6546 (1999). https://doi.org/10.1021/jp9903817

    Article  CAS  PubMed  Google Scholar 

  8. Dunne, J.A., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir 12(24), 5896–5904 (1996). https://doi.org/10.1021/la960496r

    Article  CAS  Google Scholar 

  9. Siperstein, F., Gorte, R.J., Myers, A.L.: Measurement of excess functions of binary gas mixtures adsorbed in zeolites by adsorption calorimetry. Adsorption 5(2), 169–176 (1999). https://doi.org/10.1023/a:1008973409819

    Article  CAS  Google Scholar 

  10. Siperstein, F., Gorte, R.J., Myers, A.L.: A new calorimeter for simultaneous measurements of loading and heats of adsorption from gaseous mixtures. Langmuir 15(4), 1570–1576 (1999). https://doi.org/10.1021/la980946a

    Article  CAS  Google Scholar 

  11. Sircar, S., Golden, T.C.: 110th Anniversary: comments on heterogeneity of practical adsorbents. Ind. Eng. Chem. Res. 58(25), 10984–11002 (2019). https://doi.org/10.1021/acs.iecr.9b01025

    Article  CAS  Google Scholar 

  12. Sircar, S.: Heat of adsorption on heterogeneous adsorbents. Appl. Surf. Sci. 252(3), 647–653 (2005). https://doi.org/10.1016/j.apsusc.2005.02.082

    Article  CAS  Google Scholar 

  13. Tun, H., Chen, C.-C.: Isosteric heat of adsorption from thermodynamic Langmuir isotherm. Adsorption 27(6), 979–989 (2021). https://doi.org/10.1007/s10450-020-00296-3

    Article  CAS  Google Scholar 

  14. Son, K.N., Cmarik, G.E., Knox, J.C., Weibel, J.A., Garimella, S.V.: Measurement and prediction of the heat of adsorption and equilibrium concentration of CO2 on zeolite 13X. J. Chem. Eng. Data 63(5), 1663–1674 (2018). https://doi.org/10.1021/acs.jced.8b00019

    Article  CAS  Google Scholar 

  15. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  16. Mathias, P.M., Kumar, R., Moyer, J.D., et al.: Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite. Ind. Eng. Chem. Res. 35(7), 2477–2483 (1996)

    Article  CAS  Google Scholar 

  17. Toth, J.: State equation of the solid-gas interface layers. Acta Chim Hung. 69, 311–328 (1971)

    CAS  Google Scholar 

  18. Chang, C.-K., Tun, H., Chen, C.-C.: An activity-based formulation for Langmuir adsorption isotherm. Adsorption 26(3), 375–386 (2020). https://doi.org/10.1007/s10450-019-00185-4

    Article  CAS  Google Scholar 

  19. Kaur, H., Tun, H., Sees, M., Chen, C.-C.: Local composition activity coefficient model for mixed-gas adsorption equilibria. Adsorption 25(5), 951–964 (2019). https://doi.org/10.1007/s10450-019-00127-0

    Article  CAS  Google Scholar 

  20. Sircar, S.: Excess properties and thermodynamics of multicomponent gas adsorption. J. Chem. Soc. Faraday Trans. 81(7), 1527–1540 (1985). https://doi.org/10.1039/f19858101527

    Article  CAS  Google Scholar 

  21. He, Y., Yun, J.H., Seaton, N.A.: Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption. Langmuir 20(16), 6668–6678 (2004). https://doi.org/10.1021/la036430v

    Article  CAS  PubMed  Google Scholar 

  22. Bulow, M., Lorenz, P.: Isosteric adsorption equilibria for binary krypton-xenon mixtures on CaA type zeolite. Ind. Eng. Chem. Res. 61, 119–128 (1987)

    Google Scholar 

  23. Sircar, S.: Estimation of isosteric heats of adsorption of single gas and multicomponent gas-mixtures. Ind. Eng. Chem. Res. 31(7), 1813–1819 (1992). https://doi.org/10.1021/ie00007a030

    Article  CAS  Google Scholar 

  24. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965). https://doi.org/10.1002/aic.690110125

    Article  CAS  Google Scholar 

  25. Siperstein, F.R., Myers, A.L.: Mixed-gas adsorption. AIChE J. 47(5), 1141–1159 (2001). https://doi.org/10.1002/aic.690470520

    Article  CAS  Google Scholar 

  26. Sundaram, N.: A modification of the Dubinin isotherm. Langmuir 9(6), 1568–1573 (2002). https://doi.org/10.1021/la00030a024

    Article  Google Scholar 

  27. Hamid, U., Vyawahare, P., Tun, H., Chen, C.-C.: Generalization of thermodynamic Langmuir isotherm for mixed-gas adsorption equilibria. AIChE J. 68(6), e17663 (2022). https://doi.org/10.1002/aic.17663

    Article  CAS  Google Scholar 

  28. Builes, S., Sandler, S.I., Xiong, R.: Isosteric heats of gas and liquid adsorption. Langmuir 29(33), 10416–10422 (2013). https://doi.org/10.1021/la401035p

    Article  CAS  PubMed  Google Scholar 

  29. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14(1), 135–144 (1968). https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

  30. Tun, H.: Prediction of Mixed-Gas Adsorption Equilibria and Isosteric Heat of Adsorption from Its Pure Component Adsorption Isotherms. Texas Tech University, Lubbock (2020)

    Google Scholar 

  31. Britt, H.I., Luecke, R.H.: The estimation of parameters in nonlinear implicit models. Technometrics 15(2), 233–247 (1973). https://doi.org/10.1080/00401706.1973.10489037

    Article  Google Scholar 

  32. Cmarik, G., Son, K., Knox, J.: Standard Isotherm Fit Information for Dry CO2 on Sorbents for 4-Bed Molecular Sieve. 2017. NASA/TM—2017–219847. December 2017.

  33. Szepesy, L., Illes, V.: Adsorption of gases and gas mixtures, I. Acta Chim. Hung. 35, 37–50 (1963)

    CAS  Google Scholar 

  34. Khvoshchev, S.S., Zverev, A.V.: Calorimetric study of NH3 and CO2 adsorption on synthetic faujasites with Ca2+, Mg2+, and La3+ cations. J. Colloid Interface Sci. 144(2), 571–578 (1991). https://doi.org/10.1016/0021-9797(91)90422-5

    Article  CAS  Google Scholar 

  35. Llewellyn, P.L., Maurin, G.: Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. Comptes Rendus Chimie. Mar-Apr 8(3–4), 283–302 (2005). https://doi.org/10.1016/j.crci.2004.11.004

    Article  CAS  Google Scholar 

  36. Sircar, S., Cao, D.V.: Heat of adsorption. Chem. Eng. Technol. 25(10), 945–948 (2002). https://doi.org/10.1002/1521-4125(20021008)25:10%3c945::Aid-ceat945%3e3.0.Co;2-f

    Article  CAS  Google Scholar 

  37. Cao, D.V., Sircar, S.: Heats of adsorption of pure SF6 and CO2 on silicalite pellets with alumina binder. Ind. Eng. Chem. Res. 40(1), 156–162 (2001). https://doi.org/10.1021/ie000650b

    Article  CAS  Google Scholar 

  38. Szepesy, L., Illes, V.: Adsorption of gases and gas mixtures, III. Acta Chim. Hung. 35, 245–253 (1963)

    CAS  Google Scholar 

  39. Dunne, J.A., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 3. Mixtures of CH4 and C2H6 in Silicalite and Mixtures of CO2 and C2H6 in NaX. Langmuir 13(16), 4333–4341 (1997). https://doi.org/10.1021/la960984z

    Article  CAS  Google Scholar 

  40. Sing, K.S.W.: Assessment of surface area by gas adsorption. In: Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G. (eds.) Adsorption by Powders and Porous Solids, pp. 237–268. Academic Press, Boca Raton (2014)

    Chapter  Google Scholar 

  41. McClellan, A.L., Harnsberger, H.F.: Cross-sectional areas of molecules adsorbed on solid surfaces. J. Colloid Interface Sci. 23(4), 577–599 (1967). https://doi.org/10.1016/0021-9797(67)90204-4

    Article  CAS  Google Scholar 

  42. Livingston, H.K.: The cross-sectional areas of molecules adsorbed on solid surfaces. J. Colloid Sci. 4(5), 447–458 (1949). https://doi.org/10.1016/0095-8522(49)90043-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Funding

Funding support is provided by the U. S. Department of Energy under the grant DE-EE0007888. The authors gratefully acknowledge the financial support of the Jack Maddox Distinguished Engineering Chair Professorship in Sustainable Energy sponsored by the J.F Maddox Foundation.

Author information

Authors and Affiliations

Authors

Contributions

UH: conceptualization-equal, data curation-lead, formal analysis-lead, investigation-lead, methodology-equal, software-lead, validation-lead, visualization-lead, writing-original draft-lead. PV: conceptualization-supporting, data curation-supporting, formal analysis-supporting, methodology-supporting, writing-original draft-supporting. C-CC: conceptualization-equal, data curation-supporting, formal analysis-supporting, funding acquisition-lead, investigation-lead, methodology-equal, project administration-lead, resources-lead, software-supporting, supervision-lead, validation-equal, visualization-supporting, writing-original draft-supporting, writing-review & editing-lead.

Corresponding author

Correspondence to Chau-Chyun Chen.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, U., Vyawahare, P. & Chen, CC. Estimation of isosteric heat of adsorption from generalized Langmuir isotherm. Adsorption 29, 45–64 (2023). https://doi.org/10.1007/s10450-023-00379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00379-x

Keywords

Navigation