Skip to main content

Effect of pellet size on PSA performance: monolayer and multilayer bed case study for biogas upgrading

Abstract

A demand-driven pressure swing adsorption biogas upgrading application is modelled using monolayer and multilayered (bilayer) beds, to gain insight on the impact of the adsorbent pellet size on the overall performance of such processes. Pellet radii in the range of 0.1–2.4 mm were studied, for fixed cycle settings and column dimensions. Varying the pellet size influences the sorption kinetics and flow resistance, resulting in the existence of an optimum pellet size for monolayered beds. For fixed cycle settings, small pellets may yield higher purities at low total productivities, yet show a more rapid decrease in product purity with increasing productivities due to the higher pressure drop. Furthermore, 18 configurations with beds containing a layer of larger pellets and a second layer of smaller pellets (bilayer) were investigated. Bilayered beds with 0.3 mm, 0.6 and 2.4 mm radius pellets were combined, with the first layer taking up 25, 50 or 75% of the bed. With respect to upward flow in the adsorption step, beds with the smallest pellet size in the top layer (LS beds) can offer higher product purity than beds with the smallest pellet in the bottom layer (SL beds).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49(18), 3059–3075 (1994). https://doi.org/10.1016/0009-2509(94)E0120-F

    CAS  Article  Google Scholar 

  2. Shigaki, N., et al.: Reduction of electric power consumption in CO2-PSA with zeolite 13X adsorbent. Energies 11(4), 1–21 (2018). https://doi.org/10.3390/en11040900

    CAS  Article  Google Scholar 

  3. Shirley, A.I., LaCava, A.I.: PSA performance of densely packed adsorbent beds. AIChE J. 41(6), 1389–1394 (1995). https://doi.org/10.1002/aic.690410605

    CAS  Article  Google Scholar 

  4. Nikolic, D., Kikkinides, E.S., Georgiadis, M.C.: Optimization of multibed pressure swing adsorption processes. Ind. Eng. Chem. Res. 48(11), 5388–5398 (2009). https://doi.org/10.1021/ie801357a

    CAS  Article  Google Scholar 

  5. Ackley, M.W.: US 6790260 B2 enhanced rate PSA process. (2004)

  6. Chlendi, M., Tondeur, D.: Dynamic behaviour of layered columns in pressure swing adsorption. Gas Sep. Purif. 9(4), 231–242 (1995). https://doi.org/10.1016/0950-4214(95)00005-V

    CAS  Article  Google Scholar 

  7. Ahn, H., Lee, C.H.: Adsorption dynamics of water in layered bed for air-drying TSA process. AIChE J. 49(6), 1601–1609 (2003). https://doi.org/10.1002/aic.690490623

    CAS  Article  Google Scholar 

  8. Baksh, M.S.A., Ackley, M.W.: US 6 340 382 B1. (2002)

  9. Cavenati, S., Grande, C.A., Rodrigues, A.E.: Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 61(12), 3893–3906 (2006). https://doi.org/10.1016/j.ces.2006.01.023

    CAS  Article  Google Scholar 

  10. Golden, T.C., Weist, E.L.: US 6,814,787 B2. (2004)

  11. Park, J.H., Kim, J.N., Cho, S.H.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46(4), 790–802 (2000). https://doi.org/10.1002/aic.690460413

    CAS  Article  Google Scholar 

  12. Rege, S.U., et al.: Air-prepurification by pressure swing adsorption using single/layered beds. Chem. Eng. Sci. 56(8), 2745–2759 (2001). https://doi.org/10.1016/S0009-2509(00)00531-5

    CAS  Article  Google Scholar 

  13. Wilson, S.J., Webley, P.A.: Cyclic steady-state axial temperature profiles in multilayer, bulk gas PSA—the case of oxygen VSA. Ind. Eng. Chem. Res. 41(11), 2753–2765 (2002). https://doi.org/10.1021/ie0108090

    CAS  Article  Google Scholar 

  14. Grande, C.A., Rodrigues, A.E.: Layered vacuum pressure-swing adsorption for biogas upgrading. Ind. Eng. Chem. Res. 46(23), 7844–7848 (2007). https://doi.org/10.1021/ie070942d

    CAS  Article  Google Scholar 

  15. Nastaj, J., Ambrozek, B.: Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents. Chem. Eng. Process. 96, 44–53 (2015). https://doi.org/10.1016/j.cep.2015.08.001

    CAS  Article  Google Scholar 

  16. Ribeiro, A.M., et al.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63(21), 5258–5273 (2008). https://doi.org/10.1016/j.ces.2008.07.017

    CAS  Article  Google Scholar 

  17. Sheikh Alivand, M., Farhadi, F.: Multi-objective optimization of a multi-layer PTSA for LNG production. J. Nat. Gas Sci. Eng. 49, 435–446 (2018). https://doi.org/10.1016/j.jngse.2017.11.029

    CAS  Article  Google Scholar 

  18. Xiao, J., et al.: Machine learning–based optimization for hydrogen purification performance of layered bed pressure swing adsorption. Int. J. Energy Res. 44(6), 4475–4492 (2020). https://doi.org/10.1002/er.5225

    CAS  Article  Google Scholar 

  19. Mathews, A.P.: Effect of adsorbent particle layering on performance of conventional and tapered fixed-bed adsorbers. J. Environ. Eng. 131(11), 1488–1494 (2005). https://doi.org/10.1061/(asce)0733-9372(2005)131

    CAS  Article  Google Scholar 

  20. Baksh, M., Simo, M.: WO 2012/096812 A1. (2012)

  21. Miller, G.Q.: EP 0 435 156 A2 Vapor phase adsorption process using sequential adsorption zones containing different particle size adsorbents. (1990)

  22. De Witte, N., Denayer, J.F.M., Van Assche, T.R.C.: Effect of adsorption duration and purge flowrate on pressure swing adsorption performance. Ind. Eng. Chem. Res. 60(37), 13684–13691 (2021). https://doi.org/10.1021/acs.iecr.1c02291

    CAS  Article  Google Scholar 

  23. Santos, M.P.S., Grande, C.A., Rodrigues, A.E.: Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design. Ind. Eng. Chem. Res. 50(2), 974–985 (2011). https://doi.org/10.1021/ie100757u

    CAS  Article  Google Scholar 

  24. Ergun, S.: Fluid through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    CAS  Google Scholar 

  25. Li, G., et al.: Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14(2–3), 415–422 (2008). https://doi.org/10.1007/s10450-007-9100-y

    CAS  Article  Google Scholar 

  26. Rajagopalan, A.K., Avila, A.M., Rajendran, A.: Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2. Int. J. Greenhouse Gas Control 46, 76–85 (2016). https://doi.org/10.1016/j.ijggc.2015.12.033

    CAS  Article  Google Scholar 

  27. Allen, K.G., von Backström, T.W., Kröger, D.G.: Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness. Powder Technol. 246, 590–600 (2013). https://doi.org/10.1016/j.powtec.2013.06.022

    CAS  Article  Google Scholar 

  28. Moran, A., Patel, M., Talu, O.: Axial dispersion effects with small diameter adsorbent particles. Adsorption 24(3), 333–344 (2018). https://doi.org/10.1007/s10450-018-9944-3

    CAS  Article  Google Scholar 

  29. Moran, A., Talu, O.: Role of pressure drop on rapid pressure swing adsorption performance. Ind. Eng. Chem. Res. 56(19), 5715–5723 (2017). https://doi.org/10.1021/acs.iecr.7b00577

    CAS  Article  Google Scholar 

  30. Guo, J., Shah, D.B., Talu, O.: Determination of effective diffusivities in commercial single pellets: effect of water loading. Ind. Eng. Chem. Res. 46(2), 600–607 (2007). https://doi.org/10.1021/ie060747j

    CAS  Article  Google Scholar 

  31. Silva, J.A.C., Schumann, K., Rodrigues, A.E.: Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 158, 219–228 (2012). https://doi.org/10.1016/j.micromeso.2012.03.042

    CAS  Article  Google Scholar 

  32. Kamiuto, K., Goubaru, A., Ermalina: Diffusion coefficients of carbon dioxide within type 13X zeolite particles. Chem. Eng. Commun. 193(5), 628–638 (2006). https://doi.org/10.1080/00986440500193970

    CAS  Article  Google Scholar 

  33. Hu, X., et al.: Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20(1), 121–135 (2014). https://doi.org/10.1007/s10450-013-9554-z

    CAS  Article  Google Scholar 

  34. Hossain, M.I., et al.: Mass transfer mechanisms and rates of CO2 and N2 in 13X zeolite from volumetric frequency response. Ind. Eng. Chem. Res. 58(47), 21679–21690 (2019). https://doi.org/10.1021/acs.iecr.9b04756

    CAS  Article  Google Scholar 

  35. Krishna, R., Van Baten, J.M.: Highlighting the anti-synergy between adsorption and diffusion in cation-exchanged faujasite zeolites. ACS Omega (2022). https://doi.org/10.1021/acsomega.2c00427

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shen, D., Bülow, M.: Sorption Kinetic and Porosimetric Evaluation of Novel BOC PPU TSA Sorbents: NaLSX Zeolite. (1998). https://doi.org/10.13140/RG.2.2.31422.43845

  37. Webley, P.A., et al.: A new multi-bed vacuum swing adsorption cycle for CO2 capture from flue gas streams. Energy Procedia 114, 2467–2480 (2017). https://doi.org/10.1016/j.egypro.2017.03.1398

    CAS  Article  Google Scholar 

  38. Haghpanah, R., et al.: Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation. Ind. Eng. Chem. Res. 52(11), 4249–4265 (2013). https://doi.org/10.1021/ie302658y

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom R. C. Van Assche.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Joeri F.M. Denayer is an editorial board member of Adsorption journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 711.0 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zapata Ballesteros, A., De Witte, N., Denayer, J.F.M. et al. Effect of pellet size on PSA performance: monolayer and multilayer bed case study for biogas upgrading. Adsorption 28, 197–208 (2022). https://doi.org/10.1007/s10450-022-00365-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-022-00365-9

Keywords

  • Layered bed
  • Pellet size
  • Biogas
  • Model
  • Pressure swing adsorption