Skip to main content

Advertisement

Log in

CO2 capture by ethanolamines functionalized resins: amination and kinetics of adsorption in a fixed bed

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The main aim of this manuscript was to investigate the effect of amine (MEA, DEA and TEA) functionalization of high surface area supports (Amberlite IR120H, Ambersep 252H, Amberlite 200CNa and Amberlite XAD7HP) on adsorption of CO2 from gases streams. A saturated factorial design of experiments was initially applied to determine the influence of four amine impregnation variables on amine loading. Except for the amine concentration whose effect was significantly positive on the amount of ethanolamine impregnated in Amberlite XAD7HP (p ≤ 0.05), the other factors had negligible importance. Kinetic experiments of CO2 adsorption were performed in a fixed bed at different inlet concentrations of CO2 and temperatures. The amounts of adsorbed CO2 on the DEA enriched Ambersep 252H, Amberlite 200CNa and Amberlite XAD7HP at bed saturation were ~ 40–400 times as high as those obtained with the same adsorbents without impregnation. DEA enriched Amberlite IR120H and TEA functionalized resins presented small capacities to adsorb CO2 at the investigated conditions, while MEA enriched resins were effective as CO2 adsorbents in the case of impregnation in Amberlite 200CNa. A classical fundamental model described correctly the breakthrough curves for CO2 adsorption–desorption at concentrations of CO2 in the gas feed stream of 1%, 3% and 5% at 40 °C and 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C A :

Initial concentration of ethanolamine for resin amination (kg m3)

C :

Concentration of CO2 in the gas stream flowing in the fixed bed at t and z (kg m3)

C e :

Equilibrium concentration of CO2 in the gas phase (kg m3)

CL :

Outlet concentration of CO2 in the gas phase (kg m3)

C 0 :

Concentration of CO2 in the gas feed stream of the fixed bed (kg m3)

D L :

Axial dispersion coefficient (m2 s1)

e 0 :

Arithmetic mean of Y2 for amination of a specific resin (kg kg1)

e j :

Parameter in Eq. (1) (kg kg1)

k C a :

Effective coefficient of CO2 transfer between gas and solid phases (s1)

K :

Adsorption equilibrium constant for CO2 (m3 kg1)

k YN :

Parameter of the Yoon and Nelson model (Eq. 4) (s1)

m s :

Mass of resin packed in the bed (kg)

n OH :

Number of OH groups in the ethanolamine fixed in the examined resins

Q 0 :

Volumetric flow rate of gases in the feed stream of the fixed bed (m3 s1)

T :

Temperature (°C)

T high :

Highest temperature of amination (°C)

T low :

Lowest temperature of amination (°C)

T 0 :

Gas feed stream temperature in the bed (°C)

t :

Time (s)

u 0 :

Inlet superficial velocity of the gas in the bed (m s1)

W :

Concentration of CO2 in the solid phase in the bed at t and z (kg kg1)

W e :

Amount of CO2 adsorbed at equilibrium (kg kg1)

W s :

CO2 adsorbed on the resins at bed saturation (kg kg1)

W m :

CO2 adsorbed per mass of resin when all the surface of adsorbent is covered (kg kg1)

X j :

Dimensionless coded variable in Eq. (1)

X 0 :

Fraction of CO2 in the gas feed stream of the fixed bed (% in v/v)

Y 1 :

Mass loss of resin due to the pretreatment with methanol (kg kg1)

Y 2 :

Mass ratio of fixed amine and resin free of ethanolamine pretreated with methanol (kg kg1)

z :

Axial position in the bed (m)

ε :

Bed void fraction (m3 m3)

ρ s :

Adsorbent density (kg m3)

τ :

Parameter of the Yoon and Nelson model (Eq. 4) (s)

References

  1. Ding, R., Zheng, W., Yang, K., Dai, Y., Ruan, X., Yan, X., He, G.: Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.116209

    Article  Google Scholar 

  2. Norahim, N., Yaisanga, P., Faungnawakij, K., Charinpanitkul, T., Klaysom, C.: Recent membrane developments for CO2 separation and capture. Chem. Eng. Technol. (2018). https://doi.org/10.1002/ceat.201700406

    Article  Google Scholar 

  3. Rehman, A., Heo, Y.-J., Nazir, G., Park, S.-J.: Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO2 adsorption. Carbon (2021). https://doi.org/10.1016/j.carbon.2020.09.088

    Article  Google Scholar 

  4. Shaw, R.A., Hatton, T.A.: Electrochemical CO2 capture thermodynamics. Int. J. Greenh. Gas Control (2020). https://doi.org/10.1016/j.ijggc.2019.102878

    Article  Google Scholar 

  5. Brunetti, A., Scura, F., Barbieri, G., Drioli, E.: Membrane technologies for CO2 separation. J. Membr. Sci. (2010). https://doi.org/10.1016/j.memsci.2009.11.040

    Article  Google Scholar 

  6. Ji, G., Zhao, M.: Membrane separation technology in carbon capture. In: Yun, Y. (ed.) Recent advances in carbon capture and storage. Intech, Rijeka (2017). https://doi.org/10.5772/65723

    Chapter  Google Scholar 

  7. Wang, T., Liu, F., Ge, K., Fang, M.: Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine, N-(2-aminoethyl) ethanolamine and their blends. Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2016.12.129

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu, Y.S., Li, Y., Lu, H.F., Yan, L.W., Zhang, Z.X., Wang, G.X., Rudolph, V.: Multi-field synergy study of CO2 capture process by chemical absorption. Chem. Eng. Sci. (2010). https://doi.org/10.1016/j.ces.2010.02.025

    Article  Google Scholar 

  9. Cecilia, J.A., Vilarrasa-García, E., Morales-Ospino, R., Bastos-Neto, M., Azevedo, D.C.S., Rodríguez-Castellón, E.: Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature. Adsorption (2019). https://doi.org/10.1007/s10450-019-00118-1

    Article  Google Scholar 

  10. Darunte, L.A., Walton, K.S., Sholl, D.S., Jones, C.W.: CO2 capture via adsorption in amine-functionalized sorbents. Curr. Opin. Chem. Eng. (2016). https://doi.org/10.1016/j.coche.2016.03.002

    Article  Google Scholar 

  11. Das, D., Meikap, B.C.: Comparison of adsorption capacity of mono-ethanolamine and di-ethanolamine impregnated activated carbon in a multi-staged fluidized bed reactor for carbon-dioxide capture. Fuel (2018). https://doi.org/10.1016/j.fuel.2018.03.090

    Article  Google Scholar 

  12. Gelles, T., Lawson, S., Rownaghi, A.A., Rezaei, F.: Recent advances in development of amine functionalized adsorbents for CO2 capture. Adsorption (2019). https://doi.org/10.1007/s10450-019-00151-0

    Article  Google Scholar 

  13. Li, Q., Zhang, H., Peng, F., Wang, C., Li, H.-L., Xiong, L., Guo, H., Chen, X.: Monoethanolamine modified attapulgite-based amorphous silica for the selective adsorption of CO2 from simulated biogas. Energy Fuels (2020). https://doi.org/10.1021/acs.energyfuels.9b03997

    Article  Google Scholar 

  14. Rehman, A., Park, S.-J.: From chitosan to urea-modified carbons: tailoring the ultra-microporosity for enhanced CO2 adsorption. Carbon (2020). https://doi.org/10.1016/j.carbon.2019.12.068

    Article  Google Scholar 

  15. Santiago, R.G., Siqueira, R.M., Alves, C.A., Vilarrasa-García, E., Maia, D.A.S., Bastos-Neto, M., de Azevedo, D.C.S.: Evaluation of the thermal regeneration of an amine-grafted mesoporous silica used for CO2/N2 separation. Adsorption (2020). https://doi.org/10.1007/s10450-019-00112-7

    Article  Google Scholar 

  16. Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., Versteeg, G.F.: CO2 capture from power plants. Int. J. Greenh. Gas Control (2007). https://doi.org/10.1016/s1750-5836(07)00032-1

    Article  Google Scholar 

  17. Kim, I., Svendsen, H.F.: Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl) ethanolamine (AEEA) solutions. Ind. Eng. Chem. Res. (2007). https://doi.org/10.1021/ie0616489

    Article  Google Scholar 

  18. Arshad, M.W., Fosbøl, P.L., von Solms, N., Svendsen, H.F., Thomsen, K.: Equilibrium Solubility of CO2 in Alkanolamines. Energy Procedia (2014). https://doi.org/10.1016/j.egypro.2014.07.025

    Article  Google Scholar 

  19. Chen, S., Han, X., Sun, X., Luo, X., Liang, Z.: The comparative kinetics study of CO2 absorption into non-aqueous DEEA/MEA and DMEA/MEA blended systems solution by using stopped-flow technique. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.03.171

    Article  Google Scholar 

  20. Li, Z., Wang, L., Li, C., Cui, Y., Li, S., Yang, G., Shen, Y.: Absorption of carbon dioxide using ethanolamine-based deep eutectic solvents. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b00555

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu, Y., Liao, A., Yun, Z., Liang, Y., Yao, Q.: Absorption of carbon dioxide in ethanolamine solutions. Asian. J. Chem. (2014). https://doi.org/10.14233/ajchem.2014.15301

    Article  Google Scholar 

  22. Cuzuel, V., Brunet, J., Rey, A., Dugay, J., Vial, J., Pichon, V., Carrette, P.-L.: Validation of a liquid chromatography tandem mass spectrometry method for targeted degradation compounds of ethanolamine used in CO2 capture: application to real samples. Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles (2014). https://doi.org/10.2516/ogst/2014021

    Article  Google Scholar 

  23. da Silva, E.F., Lepaumier, H., Grimstvedt, A., Vevelstad, S.J., Einbu, A., Vernstad, K., Svendsen, H.F., Zahlsen, K.: Understanding 2-ethanolamine degradation in postcombustion CO2 capture. Ind. Eng. Chem. Res. (2012). https://doi.org/10.1021/ie300718a

    Article  Google Scholar 

  24. De Vroey, S., Huynh, H., Lepaumier, H., Absil, P., Thielens, M.-L.: Corrosion investigations in 2-ethanolamine based post- combustion CO2 capture pilot plants. Energy Procedia (2013). https://doi.org/10.1016/j.egypro.2013.06.083

    Article  Google Scholar 

  25. Hasib-ur-Rahman, M., Larachi, F.: Prospects of using room-temperature ionic liquids as corrosion inhibitors in aqueous ethanolamine-based CO2 capture solvents. Ind. Eng. Chem. Res. (2013). https://doi.org/10.1021/ie401816w

    Article  Google Scholar 

  26. Shakerian, F., Kim, K.-H., Szulejko, J.E., Park, J.-W.: A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2015.03.026

    Article  Google Scholar 

  27. Serna-Guerrero, R., Da’na, E., Sayari, A.: New insights into the interactions of CO2 with amine-functionalized silica. Ind. Eng. Chem. Res. (2008). https://doi.org/10.1021/ie801186g

    Article  Google Scholar 

  28. Rehman, A., Park, S.-J.: Tunable nitrogen-doped microporous carbons: delineating the role of optimum pore size for enhanced CO2 adsorption. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.01.063

    Article  Google Scholar 

  29. Nazir, G., Rehman, A., Park, S.J.: Sustainable N-doped hierarchical porous carbons as efficient CO2 adsorbents and high-performance super capacitor electrodes. J. CO2 Util. (2020). https://doi.org/10.1016/j.jcou.2020.101326

    Article  Google Scholar 

  30. Meng, L.-Y., Park, S.-J.: One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption. Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2013.11.016

    Article  Google Scholar 

  31. Przepiórski, J., Skrodzewicz, M., Morawski, A.: High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. (2004). https://doi.org/10.1016/j.apsusc.2003.10.006

    Article  Google Scholar 

  32. Lee, S.-Y., Park, S.-J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. (2015). https://doi.org/10.1016/j.jiec.2014.09.001

    Article  Google Scholar 

  33. Arstad, B., Fjellvåg, H., Kongshaug, K.O., Swang, O., Blom, R.: Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption (2008). https://doi.org/10.1007/s10450-008-9137-6

    Article  Google Scholar 

  34. Birbara, P.J., Filburn, T.P., Nalette, T.A.: Regenerable solid amine sorbent. USA Patent, 5,876,488 (1999).

  35. Silva, M., Castellanos, L., Ottens, M.: Capture and purification of polyphenols using functionalized hydrophobic resins. Ind. Eng. Chem. Res. (2018). https://doi.org/10.1021/acs.iecr.7b05071

    Article  PubMed  PubMed Central  Google Scholar 

  36. Filburn, T., Helble, J.J., Weiss, R.A.: Development of supported ethanolamines and modified ethanolamines for CO2 capture. Ind. Eng. Chem. Res. (2005). https://doi.org/10.1021/ie0495527

    Article  Google Scholar 

  37. Jadhav, P.D., Chatti, R.V., Biniwale, R.B., Labhsetwar, N.K., Devotta, S., Rayalu, S.S.: Monoethanol amine modified zeolite 13× for CO2 adsorption at different temperatures. Energy Fuels (2007). https://doi.org/10.1021/ef070038y

    Article  Google Scholar 

  38. StatSoft, Inc.: STATISTICA (data analysis software system). Version 7.1 (2005). www.statsoft.com.

  39. Yoon, Y.H., Nelson, J.H.: Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J. 45, 509–516 (1984)

    Article  CAS  Google Scholar 

  40. Patel, H.: Fixed-bed column adsorption study: a comprehensive review. Appl. Water Sci. (2019). https://doi.org/10.1007/s13201-019-0927-7

    Article  Google Scholar 

  41. Yin, C.Y., Aroua, M.K., Daud, W.M.A.W.: Fixed-bed adsorption of metal ions from aqueous solution on polyethyleneimine-impregnated palm shell activated carbon. Chem. Eng. J. (2009). https://doi.org/10.1016/j.cej.2008.07.032

    Article  Google Scholar 

  42. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem (2009). https://doi.org/10.1002/cssc.200900036

    Article  PubMed  Google Scholar 

  43. Ünveren, E.E., Monkul, B.Ö., Sarıoğlan, Ş, Karademir, N., Alper, E.: Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum (2017). https://doi.org/10.1016/j.petlm.2016.11.001

    Article  Google Scholar 

  44. Dantas, T.L.P., Amorim, S.M., Luna, F.M.T., Silva, I.J., de Azevedo, D.C.S., Rodrigues, A.E., Moreira, R.F.P.M.: Adsorption of carbon dioxide onto activated carbon and nitrogen-enriched activated carbon: surface changes, equilibrium, and modeling of fixed-bed adsorption. Sep. Sci. Technol. (2010). https://doi.org/10.1080/01496390903401762

    Article  Google Scholar 

  45. Couck, S., Denayer, J.F.M., Baron, G.V., Rémy, T., Gascon, J., Kapteijn, F.: An amine-functionalized MIL-53 metal−organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja900555r

    Article  PubMed  Google Scholar 

  46. McCabe, W.L., Smith, J.C., Harriott, P.: Unit operation of chemical engineering. McGraw-Hill, Singapore (2005)

    Google Scholar 

  47. Heydari-Gorji, A., Sayari, A.: Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind. Eng. Chem. Res. (2012). https://doi.org/10.1021/ie3003446

    Article  Google Scholar 

  48. Yu, Q., de la Delgado, J.P., Veneman, R., Brilman, D.W.F.: Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies. Ind. Eng. Chem. Res. (2017). https://doi.org/10.1021/acs.iecr.6b04645

    Article  PubMed  PubMed Central  Google Scholar 

  49. Davis, J., Rochelle, G.: Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia (2009). https://doi.org/10.1016/j.egypro.2009.01.045

    Article  Google Scholar 

  50. Kennard, M.L., Meisen, A.: Mechanisms and kinetics of diethanolamine degradation. Ind. Eng. Chem. Fundam. (1985). https://doi.org/10.1021/i100018a002

    Article  Google Scholar 

Download references

Acknowledgements

The Brazilian Council for Scientific and Technological Development (CNPq) is acknowledged by the financial support (Research Project No. 401950/2016-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Fernando Zanoelo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, T.J., Benincá, C., Zanoelo, E.F. et al. CO2 capture by ethanolamines functionalized resins: amination and kinetics of adsorption in a fixed bed. Adsorption 27, 1237–1250 (2021). https://doi.org/10.1007/s10450-021-00340-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00340-w

Keywords

Navigation