Nitrogen rejection from landfill gas using Pressure Swing Adsorption

Abstract

Landfill gas (LFG) produced from municipal solid waste substrates represents an important source of RNG and the market for its upgrade is facing significant challenges in terms of energy consumption and operating costs. To ensure higher CH4 yields and avoid its release in the atmosphere, the LFG is collected below the atmospheric pressure by the use of a vacuum pump that results in the contamination of the LFG by air and particularly N2. Most of the proposed solutions, propose a two-step separation process in which the CO2 removal takes place in the first one while N2 removal in the second. This study focuses on the removal of the N2 from a decarbonated methane stream by a four-step PSA cycle. The impact of several parameters on process performance has been investigated using numerical simulations with the aim of simplifying the unit design and operational performances. In particular we investigate the effect of the pressure at the end of the desorption step showing that it is possible to operate the cycle with the desorption pressure slightly above atmospheric one. This allows avoiding the use of a dedicated vacuum pump with, however, a penalty in the energy required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

\(b_{i,j}^{0}\) :

Bend coefficient of component j on site I at reference temperature, (1/Pa)

ci :

Mole concentration of component i in the column, (mol/m3)

\(c_{pi}\) :

Average mole concentration of i component in the pellet, (mol/m3)

D l :

Axial dispersion coefficient, (m2/s)

D m, i :

Molecular diffusion species, i (m2/s)

D k ,i :

Knudsen diffusion of species, (m2/s)

d p :

Particle diameter, (m)

\(h_{w}\) :

Convective heat transfer coefficient at the wall, (W/m2K)

k i :

Macroporous LDF constants of species i, (1/s)

P :

Total pressure, (Pa)

P i :

Partial pressure of species i, (Pa)

\(q_{i}^{s}\) :

Saturation quantity of site i, (Nm3/kg)

T :

Temperature, (K)

T 0 :

Reference temperature, (K)

\(T_{w }\) :

Temperature of the wall, (K)

U :

Superficial velocity, (m/s)

\(\Delta H_{i}\) :

Heat of adsorption of component i, (kJ/mol)

C pg :

Calorific capacity of the g, (kJ/mol K)

C ps :

Calorific capacity of the solid, (kJ/mol K)

ε b :

Interparticle void fraction of bed

ε p :

Pellet void fraction

\(\Delta H_{i,j}\) :

Activation energy of species j on site i, (kJ/mol)

\(\Delta P\) :

Linear pressure drop, (Pa/m)

λ :

Thermal conductivity of the solid particles, (W/K m)

μ :

Dynamic viscosity of the fluid, (Pa s)

ρ :

Gas density, (kg/m3)

ρ gr :

Pellet density, (kg/m3)

ρ bed :

Packed density of the bed, (kg/m3)

References

  1. 1.

    Appels, L.S., Lauwers, J., Degrve, J., Helsen, L., Lievens, B., Willems, K., Van Impe, J., Dewil, R.: Anaerobic digestion in global bio-energy production: potential and research challenges. Renew. Sustain. Energy Rev. 15, 4295–4301 (2011). https://doi.org/10.1016/j.rser.2011.07.121

    CAS  Article  Google Scholar 

  2. 2.

    Mata-Alvarez, J., Macé, S., Llabrés, P.: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74, 3–16 (2000). https://doi.org/10.1016/S0960-8524(00)00023-7

    CAS  Article  Google Scholar 

  3. 3.

    Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010). https://doi.org/10.1007/s00253-009-2246-7

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Bauer, F., Persson, T., Hulteberg, C., Tamm, D.: Biogas upgrading - technology overview, comparison and perspectives for the future. Biofuels Bioprod. Biorefin. (2013). https://doi.org/10.1002/bbb.1423

    Article  Google Scholar 

  5. 5.

    Muñoz, R., Meier, L., Diaz, I., Jeison, D.: A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 14, 727–759 (2015). https://doi.org/10.1007/s11157-015-9379-1

    CAS  Article  Google Scholar 

  6. 6.

    Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35, 1633–1645 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    Hosseini, S.E., Wahid, M.A.: Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 40, 868–875 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    Niesner, J., Jecha, D., Stehlík, P.: Biogas upgrading technologies: state of art review in european region. Chem. Eng. Trans. 35, 517–522 (2013). https://doi.org/10.3303/CET1335086

    Article  Google Scholar 

  9. 9.

    Miltner, M., Makaruk, A., Harasek, M.: Review on available biogas upgrading technologies and innovations towards advanced solutions. J. Clean. Prod. 161, 1329–1337 (2017). https://doi.org/10.1016/j.jclepro.2017.06.045

    CAS  Article  Google Scholar 

  10. 10.

    Rufford, T.E., Smart, S., Watson, G.C.Y., Graham, B.F., Boxall, J., Diniz da Costa, J.C., May, E.F.: The removal of CO 2 and N 2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94–95, 123–154 (2012). doi: https://doi.org/10.1016/j.petrol.2012.06.016

  11. 11.

    Cozma, P., Wukovits, W., Mǎmǎligǎ, I., Friedl, A., Gavrilescu, M.: Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technol. Environ. Policy (2014). https://doi.org/10.1007/s10098-014-0787-7

    Article  Google Scholar 

  12. 12.

    Abdeen, F.R.H., Mel, M., Jami, M.S., Ihsan, S.I., Ismail, A.F.: A review of chemical absorption of carbon dioxide for biogas upgrading. Chin. J. Chem. Eng 24, 693–702 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    Knaebel, K.S., Reinhold, H.E.: Landfill gas: from rubbish to resource. Adsorption 9, 87–94 (2003). https://doi.org/10.1023/A:1023871415711

    CAS  Article  Google Scholar 

  14. 14.

    Sircar, S. et al.: Recovery of methane from land fill gas. https://patents.google.com/patent/US4770676 (1988)

  15. 15.

    Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z.: Biogas upgrading by cryogenic techniques. Environ. Chem. Lett. 17, 1251–1261 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    Medrano, J.A., Llosa-Tanco, M.A., Tanaka, D.A.P., Gallucci, F.: Membranes Utilization for Biogas Upgrading to Synthetic Natural Gas. Elsevier Inc., Amsterdam (2019)

    Google Scholar 

  17. 17.

    Scholz, M., Melin, T., Wessling, M.: Transforming biogas into biomethane using membrane technology. Renew. Sustain. Energy Rev. 17, 199–212 (2013). https://doi.org/10.1016/j.rser.2012.08.009

    CAS  Article  Google Scholar 

  18. 18.

    Andriani, D., Wresta, A., Atmaja, T.D., Saepudin, A.: A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Appl. Biochem. Biotechnol. 172, 1909–1928 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    Arya, A., Divekar, S., Rawat, R., Gupta, P., Garg, M.O., Dasgupta, S., Nanoti, A., Singh, R., Xiao, P., Webley, P.A.: Upgrading biogas at low pressure by vacuum swing adsorption. Ind. Eng. Chem. Res. 54, 404 (2015). https://doi.org/10.1021/ie503243f

    CAS  Article  Google Scholar 

  20. 20.

    Grande, C.A., Rodrigues, A.E.: Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents. Ind. Eng. Chem. Res. (2007). https://doi.org/10.1021/ie061341+

    Article  Google Scholar 

  21. 21.

    Jiang, Y., Ling, J., Xiao, P., He, Y., Zhao, Q., Chu, Z., Liu, Y., Li, Z., Webley, P.A.: Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY. Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2017.11.090

    Article  Google Scholar 

  22. 22.

    Olajossy, A.: Effective recovery of methane from coal mine methane gas by vacuum pressure swing adsorption: a pilot scale case study. Chem. Eng. Sci. 1, 46–54 (2013). https://doi.org/10.12691/ces-1-4-1

    CAS  Article  Google Scholar 

  23. 23.

    Rocha, L.A.M., Andreassen, K.A., Grande, C.A.: Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure. Chem. Eng. Sci. 164, 148–157 (2017). https://doi.org/10.1016/j.ces.2017.01.071

    CAS  Article  Google Scholar 

  24. 24.

    Santos, M.P.S., Grande, C.A., Rodrigues, A.E.: Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design. Ind. Eng. Chem. Res. 50, 974–985 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    Canevesi, R.L.S., Andreassen, K.A., Da Silva, E.A., Borba, C.E., Grande, C.A.: Pressure swing adsorption for biogas upgrading with carbon molecular sieve. Ind. Eng. Chem. Res. 57, 8057–8067 (2018). https://doi.org/10.1021/acs.iecr.8b00996

    CAS  Article  Google Scholar 

  26. 26.

    Cavenati, S., Grande, C.A., Rodrigues, A.E.: Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels (2006). https://doi.org/10.1021/ef060119e

    Article  Google Scholar 

  27. 27.

    Chouikhi, N., Brandani, F., Pullumbi, P., Perre, P., Puel, F.: Biomethane production by adsorption technology: new cycle development, adsorbent selection and process optimization. Adsorption (2020). https://doi.org/10.1007/s10450-020-00250-3

    Article  Google Scholar 

  28. 28.

    Augelletti, R., Conti, M., Annesini, M.C.: Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2016.10.013

    Article  Google Scholar 

  29. 29.

    Grande, C.A., Blom, R.: Utilization of dual - PSA technology for natural gas upgrading and integrated CO2 capture. Energy Procedia 26, 2–14 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    Baena-Moreno, F.M., le Saché, E., Pastor-Pérez, L., Reina, T.R.: Membrane-based technologies for biogas upgrading: a review. Environ. Chem. Lett. 18, 1649 (2020)

    CAS  Article  Google Scholar 

  31. 31.

    Baker, R.W., Lokhandwala, K.: Natural gas processing with membranes: an overview. Ind. Eng. Chem. Res 47, 2109–2121 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    Chen, X.Y., Vinh-Thang, H., Ramirez, A.A., Rodrigue, D., Kaliaguine, S.: Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015). https://doi.org/10.1039/c5ra00666j

    CAS  Article  Google Scholar 

  33. 33.

    Makaruk, A., Miltner, M., Harasek, M.: Membrane biogas upgrading processes for the production of natural gas substitute. Sep. Purif. Technol. 74, 83–92 (2010). https://doi.org/10.1016/j.seppur.2010.05.010

    CAS  Article  Google Scholar 

  34. 34.

    Zhang, Y., Sunarso, J., Liu, S., Wang, R.: Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Greenhouse Gas Control 12, 84–107 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    Mitariten, M., Mokhatab, S.: Integrated membrane technology for the removal of multiple components. In: Proceedings of the 2019 Annual GPA Midstream Convention. pp. 183–195 (2019)

  36. 36.

    Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    Paget, N., Lehman, J.-Y.: Process for cryogenic separation of a feed stream containing methane and air gases. Patent EP003465035B1 (2020)

  38. 38.

    Briend, P., Lehman, J.Y., Zick, G.: A Novel Approach for Safe Design of a Cryogenic Bio-methane Purification Unit. Refrigeration Science and Technology, pp. 170–175. International Institute of Refrigeration, Paris (2014)

    Google Scholar 

  39. 39.

    Mitariten, M.: Nitrogen removal from natural gas with the molecular gateTM adsorption process. In: GPA Annual Convention Proceedings. pp. 544–555 (2009)

  40. 40.

    Bhadra, S.J., Farooq, S.: Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading. Ind. Eng. Chem. Res. 50, 14030 (2011). https://doi.org/10.1021/ie201237x

    CAS  Article  Google Scholar 

  41. 41.

    Effendy, S., Xu, C., Farooq, S.: Optimization of a pressure swing adsorption process for nitrogen rejection from natural gas. Ind. Eng. Chem. Res. 56, 5417 (2017)

    CAS  Article  Google Scholar 

  42. 42.

    Qinglin, H., Sundaram, S.M., Farooq, S.: Revisiting transport of gases in the micropores of carbon molecular sieves. Langmuir 19, 393–405 (2003). https://doi.org/10.1021/la026451+

    CAS  Article  Google Scholar 

  43. 43.

    Santos, M.S., Grande, C.A., Rodrigues, A.E.: New cycle configuration to enhance performance of kinetic PSA processes. Chem. Eng. Sci. 66, 1590–1599 (2011). https://doi.org/10.1016/j.ces.2010.12.032

    CAS  Article  Google Scholar 

  44. 44.

    Kennedy, D.A., Tezel, F.H.: Cation exchange modification of clinoptilolite – Screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Microporous Mesoporous Mater. (2018). https://doi.org/10.1016/j.micromeso.2017.11.054

    Article  Google Scholar 

  45. 45.

    Zhang, J., Qu, S., Li, L., Wang, P., Li, X., Che, Y., Li, X.: Preparation of carbon molecular sieves used for CH4/N2 separation. J. Chem. Eng. Data (2018). https://doi.org/10.1021/acs.jced.8b00048

    Article  Google Scholar 

  46. 46.

    Delgado, J.A., Uguina, M.A., Sotelo, J.L., Águeda, V.I., Gómez, P.: Numerical simulation of a three-bed PSA cycle for the methane / nitrogen separation with silicalite. Sep. Purif. Technol. 77, 7–17 (2011). https://doi.org/10.1016/j.seppur.2010.11.004

    CAS  Article  Google Scholar 

  47. 47.

    Park, J.H., Beum, H.T., Kim, J.N., Cho, S.H.: Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res. 41, 4122–4131 (2002). https://doi.org/10.1021/ie010716i

    CAS  Article  Google Scholar 

  48. 48.

    Reynolds, S.P., Mehrotra, A., Ebner, A.D., Ritter, J.A.: Heavy reflux PSA cycles for CO2 recovery from flue gas: part I. Performance evaluation. Adsorption 14, 399–413 (2008). https://doi.org/10.1007/s10450-008-9102-4

    CAS  Article  Google Scholar 

  49. 49.

    Erden, L., Ebner, A.D., Ritter, J.A.: Separation of landfill gas CH4 from N2 using pressure vacuum swing adsorption cycles with heavy reflux. Energy Fuels 32, 3488–3498 (2018). https://doi.org/10.1021/acs.energyfuels.7b03534

    CAS  Article  Google Scholar 

  50. 50.

    Ruthven, M.D., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. VCH Publishers, New York (1994)

    Google Scholar 

  51. 51.

    Da Silva, F.A., Silva, J.A., Rodrigues, A.E.: General package for the simulation of cyclic adsorption processes. Adsorption (1999). https://doi.org/10.1023/A:1008974908427

    Article  Google Scholar 

  52. 52.

    Brandani, F., Ruthven, D., Coe, C.G.: Measurement of adsorption equilibrium by the zero length column (ZLC) technique part 1: single-component systems. Ind. Eng. Chem. Res. 42, 1451–1461 (2003). https://doi.org/10.1021/ie020572n

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this paper to the memory of Dr. Shivaji Sircar whose pioneering work in the field of Adsorption Science and Engineering has shaped many of the industrial gas separation applications.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico Brandani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brandani, F., Pullumbi, P. & Monereau, C. Nitrogen rejection from landfill gas using Pressure Swing Adsorption. Adsorption (2021). https://doi.org/10.1007/s10450-021-00304-0

Download citation

Keywords

  • Nitrogen rejection
  • Pressure swing adsorption
  • Process simulation