Skip to main content
Log in

Breakthrough dynamics of nitrogen, oxygen, and argon on silver exchanged titanosilicates (Ag-ETS-10)

  • Published:
Adsorption Aims and scope Submit manuscript


Breakthrough curves of N2, O2, and Ar on Silver exchanged titanosilicates (Ag-ETS-10) extrudates and granules were measured using a laboratory scale dynamic column breakthrough (DCB) apparatus. In order to investigate the dynamics of the mass transfer, effect of flow rate, temperature and pressure on the composition and temperature curves were studied. In a separate attempt, N2 breakthrough curves on two columns filled with Ag-ETS-10 extrudates and granules with two different sizes were obtained. Influence of axial-dispersion, macropore, and film resistance within the column was investigated using fundamentals of mass transfer and fluid dynamics which assisted in classifying the dynamics of this separation. The experimental results indicated the rapid mass transfer and the potential for rapid cycles using Ag-ETS-10 for high-purity O2 production. A fully predictive mathematical model was shown to describe the experimental curves to a high level of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


b :

Parameter in Langmuir isotherm (\(\text {m}^3\) \(\text {mol}^{-1}\))

\(b_{0}\) :

Parameter in Langmuir isotherm (\(\text {m}^3\) \(\text {mol}^{-1}\))

c :

Fluid phase concentration (\(\text {mol m}^{-3}\))

\(C_{\text{pa}}\) :

Specific heat capacity of the adsorbed phase (\(\text {J mol}^{-1}\) \(\text {K}^{-1}\))

\(C_{\text{pg}}\) :

Specific heat capacity of the gas phase (\(\text {J mol}^{-1}\) \(\text {K}^{-1}\))

\(C_{\text{ps}}\) :

Specific heat capacity of the adsorbent (\(\text {J kg}^{-1}\) \(\text {K}^{-1}\))

\(C_{\text{pw}}\) :

Specific heat capacity of the column wall (\(\text {J kg}^{-1}\) \(\text {K}^{-1}\))

d :

Parameter in dual-site Langmuir isotherm (\(\text {m}^3\) \(\text {mol}^{-1}\))

\(d_{0}\) :

Parameter in dual-site Langmuir isotherm (\(\text {m}^3\) \(\text {mol}^{-1}\))

\(D_{\text{L}}\) :

Axial dispersion (\(\text {m}^2\) \(\text {s}^{-1}\))

\(D_{\text{m}}\) :

Molecular diffusivity (\(\text {m}^2\) \(\text {s}^{-1}\))

\(D_{\text{p}}\) :

Macropore diffusivity (\(\text {m}^2\) \(\text {s}^{-1}\))

\(d_{\text{p}}\) :

Particle diameter (m)

\(F_{\text{in}}\) :

Inlet flow rate (ccm)

\(F_{\text{out}}\) :

Outlet flow rate (ccm)

\(h_{\text{in}}\) :

Inside heat transfer coefficient (\(\text {J m}^{-2}\) \(\text {K}^{-1}\) \(\text {s}^{-1}\))

\(h_{\text{out}}\) :

Outside heat transfer coefficient (\(\text {J m}^{-2}\) \(\text {K}^{-1}\) \(\text {s}^{-1}\))

\(k_{\text{i}}\) :

Mass transfer coefficient (\(\text {s}^{-1}\))

\(k_{\text{f}}\) :

External film resistance coefficient (\(\text {s}^{-1}\))

\(K_{\text{w}}\) :

Thermal conductivity of column wall (\(\text {J m}^{-1}\) \(\text {K}^{-1}\) \(\text {s}^{-1}\))

\(K_{z}\) :

Effective gas thermal conductivity (\(\text {J m}^{-1}\) \(\text {K}^{-1}\) \(\text {s}^{-1}\))

L :

Column length (m)

\(L_{p}\) :

Particle length (m)

\(M_{\text{ads}}\) :

Mass of adsorbent (kg)

P :

Pressure (Pa)

Pe :

Peclet number

q :

Solid phase concentration (\(\text {mol kg}^{-1}\))

\(q_{s}\) :

Saturation concentration in the solid phase (\(\text {mol kg}^{-1}\))

\(q^{*}\) :

Equilibrium solid phase concentration (\(\text {mol kg}^{-1}\))

R :

Universal gas constant (Pa \(\text {m}^{3}\) \(\text {mol}^{-1}\) \(\text {K}^{-1}\))

\(r_{\text{in}}\) :

Column inner radius (m)

\(r_{\text{out}}\) :

Column outer radius (m)

\(r_{\text{p}}\) :

Particle radius (m)

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

T :

Temperature (K)

\(T_{\text{a}}\) :

Ambient temperature (K)

\(T_{\text{bath}}\) :

Water bath temperature (K)

\(T_{\text{w}}\) :

Column wall temperature (K)

t :

Time (s)

U :

Internal energy (\(\text {J mol}^{-1}\))

v :

Interstitial velocity (\(\text {m s}^{-1}\))

\(V_{\text{b}}\) :

Bed volume (\(\text {m}^{3}\))

\(V_{\text{d}}\) :

Dead volume (\(\text {m}^{3}\))

y :

Gas phase composition

z :

Axial coordinate (m)

\(\epsilon\) :

Bed voidage

\(\epsilon _{\text{p}}\) :

Particle voidage

\(\mu\) :

Fluid viscosity (\(\text {kg m}^{-1}\) \(\text {s}^{-1}\))

\(\rho _{\text{s}}\) :

Adsorbent particle density (\(\text {kg m}^{-3}\))

\(\rho _{\text{w}}\) :

Wall density (\(\text {kg m}^{-3}\))

\(\tau\) :





Inlet stream


Outlet stream


  1. Ackley, M.W.: Medical oxygen concentrators: a review of progress in air separation technology. Adsorption 25(8), 1437–1474 (2019)

    Article  CAS  Google Scholar 

  2. Rao, V.R., Farooq, S.: Experimental study of a pulsed-pressure-swing-adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind. Eng. Chem. Res. 53(33), 13157–13170 (2014)

    Article  CAS  Google Scholar 

  3. Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50(14), 8703–8710 (2011)

    Article  CAS  Google Scholar 

  4. Chai, S.W., Kothare, M.V., Sircar, S.: Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18(2), 87–102 (2012)

    Article  CAS  Google Scholar 

  5. Rao, V.R., Kothare, M.V., Sircar, S.: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 60(9), 3330–3335 (2014)

    Article  CAS  Google Scholar 

  6. Wu, C.-W., Vemula, R.R., Kothare, M.V., Sircar, S.: Experimental study of a novel rapid pressure-swing adsorption based medical oxygen concentrator: effect of the adsorbent selectivity of \(\text{ N}_{2}\) over \(\text{ O}_{2}\). Ind. Eng. Chem. Res. 55(16), 4676–4681 (2016)

    Article  CAS  Google Scholar 

  7. Vemula, R.R., Kothare, M.V., Sircar, S.: Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure. AIChE J. 62(4), 1212–1215 (2016)

    Article  CAS  Google Scholar 

  8. Ferreira, D., Magalhães, R., Bessa, J., Taveira, P., Sousa, J., Whitley, R.D., Mendes, A.: Study of AgLiLSX for single-stage high-purity oxygen production. Ind. Eng. Chem. Res. 53(40), 15508–15516 (2014)

    Article  CAS  Google Scholar 

  9. Kumar, R.: Vacuum swing adsorption process for oxygen production—a historical perspective. Sep. Sci. Technol. 31(7), 877–893 (1996)

    Article  Google Scholar 

  10. Hejazi, S.A.H., Perez, L.E., Pai, K.N., Rajendran, A., Kuznicki, S.M.: Single- and dual-stage high-purity oxygen production using silver-exchanged titanosilicates (Ag-ETS-10). Ind. Eng. Chem. Res. 57(27), 8997–9008 (2018)

    Article  Google Scholar 

  11. Hejazi, S.A.H., Perez, L.E., Rajendran, A., Kuznicki, S.: Cycle development and process optimization of high-purity oxygen production using silver-exchanged titanosilicates. Ind. Eng. Chem. Res. 56(19), 5679–5691 (2017)

    Article  Google Scholar 

  12. Hejazi, S.A.H., Rajendran, A., Sawada, J., Kuznicki, S.: Dynamic column breakthrough and process studies of high-purity oxygen production using silver-exchanged titanosilicates. Ind. Eng. Chem. Res. 55(20), 5993–6005 (2016)

    Article  Google Scholar 

  13. Vemula, R.R., Kothare, M.V., Sircar, S.: Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process. Sep. Sci. Technol. 52(1), 35–41 (2017)

    Article  CAS  Google Scholar 

  14. Knox, J.C., Ebner, A.D., LeVan, M.D., Coker, R.F., Ritter, J.A.: Limitations of breakthrough curve analysis in fixed-bed adsorption. Ind. Eng. Chem. Res. 55(16), 4734–4748 (2016)

    Article  CAS  Google Scholar 

  15. Vemula, R.R., Kothare, M.V., Sircar, S.: Anatomy of a rapid pressure swing adsorption process performance. AIChE J. 61(6), 2008–2015 (2015)

    Article  CAS  Google Scholar 

  16. Moran, A., Patel, M., Talu, O.: Axial dispersion effects with small diameter adsorbent particles. Adsorption 24(3), 333–344 (2018)

    Article  CAS  Google Scholar 

  17. Vemula, R.R., Sircar, S.: Comments on the reliability of model simulation of a rapid pressure swing adsorption process for high-purity product. Ind. Eng. Chem. Res. 56(31), 8991–8994 (2017)

    Article  CAS  Google Scholar 

  18. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  19. Haghpanah, R., Majumder, A., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A., Amanullah, M.: Multiobjective optimization of a four-step adsorption process for postcombustion \(\text{ CO}_{2}\) capture via finite volume simulation. Ind. Eng. Chem. Res. 52(11), 4249–4265 (2013)

    Article  CAS  Google Scholar 

  20. Rajendran, A., Kariwala, V., Farooq, S.: Correction procedures for extra-column effects in dynamic column breakthrough experiments. Chem. Eng. Sci. 63(10), 2696–2706 (2008)

    Article  CAS  Google Scholar 

  21. Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of sherwood numbers. Chem. Eng. Sci. 33(10), 1375–1384 (1978)

    Article  CAS  Google Scholar 

  22. Pini, R., Joss, L., Hejazi, S.A.: Quantitative imaging of gas adsorption equilibrium and dynamics by X-ray computed tomography. Adsorption 15, 1–18 (2020)

    Google Scholar 

  23. Mazzotti, M., Rajendran, A.: Equilibrium theory—based analysis of nonlinear waves in separation processes. Annu. Rev. Chem. Biomol. Eng. 4, 119–141 (2013)

    Article  CAS  Google Scholar 

  24. Giese, M., Rottschäfer, K., Vortmeyer, D.: Measured and modeled superficial flow profiles in packed beds with liquid flow. AIChE J. 44(2), 484–490 (1998)

    Article  CAS  Google Scholar 

Download references


This paper is dedicated to the memory of Dr. Shivaji Sircar, a pioneer in adsorption thermodynamics and process development.


Financial support received form Helmholtz-Alberta initiative (HAI) and Natural Sciences and Engineering Research Council of Canada (NSERC) through their sponsorship of the industrial research chair in molecular sieve nanomaterials and supports from National Elites Foundation are greatly appreciated.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sayed Alireza Hosseinzadeh Hejazi.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interest(s): S.M.K. has a financial interest in ExtraordinaryAdsorbents, Edmonton, which has commercialized Ag-ETS-10.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh Hejazi, S.A., Estupiñan Perez, L., Maruyama, R.T. et al. Breakthrough dynamics of nitrogen, oxygen, and argon on silver exchanged titanosilicates (Ag-ETS-10). Adsorption 27, 191–203 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: