Experimental and theoretical investigation of the Na+  → Li+ cation exchange in mordenite and its effect on CO2 adsorption properties

Abstract

Anthropogenic CO2 emissions are the major drivers of global warming and climate change. The adsorption of CO2 is one of the strategies to mitigate these emissions. In this sense, different materials have been used as adsorbents as is the case of zeolites. In this work,experimental infrared and X-ray analyses together with DFT (Density Functional Theory)theoretical calculations were employed to study the adsorption of CO2 on mordenite zeolites (Na-MOR). Ion exchange followed by chemical analysis showed that the Na+ of Na-MOR was not completely substituted under the experimental conditions employed. The XRD (X-ray Diffraction) analysis indicated that Na+ exchanged for Li+ did not affect the crystallinity of the materials. The infrared results showed that CO2 interacted linearly with the sodium and lithium cations present in the main channel of the mordenite framework. Sodium in dry samples favored the formation of carbonates and hydroxycarbonate species, as did the presence of low water content in the LixNa-MOR. The DFT periodical calculation of dehydrated mordenite models led to CO2 adsorption energies in the range of − 31.6 to − 34.2 kJ mol−1, with the highest adsorption energy found for sodium mordenite.The asymmetric stretching ν3 (CO2) vibration mode resulted intense and presented a shift which indicated a higher CO2 interaction of Na-MOR. The presence of some water molecules in the mordenite framework caused a decrease in the adsorption energy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Bachmann, T.M.: Considering environmental costs of greenhouse gas emissions for setting a CO2 tax: a review. Sci. Total Environ. 720, 137524 (2020)

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Nakao, S.I., Yogo, K., Goto, K., Kai, T., Yamada, H.: Advanced CO2 capture technologies absorption adsorption and membrane separation methods. Springer International Publishing, Cham (2019)

    Google Scholar 

  3. 3.

    Pelletier, C., Rogaume, Y., Dieckhoff, L., Bardeau, G., Pons, M., Dufour, A.: Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains. Appl. Energy 235, 1381–13881 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Alonso, A., Moral-Vico, J., Markeb, A., Busquets-Fité, M., Komilis, D., Puntes, V., Sánchez, A., Font, X.: Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane. Sci. Total Environ. 595, 51–62 (2017)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Hussin, F., Aroua, M.: Recent trends in the development of adsorption technologies for carbon dioxide capture: a brief literature and patent reviews (2014–2018). J. Clean. Prod. 253, 119707 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    Cabana, N., Serra, R., Boix, A., Bolcatto, P.: Geometries and interaction energies of toluene on CsxNa1–xMordenite. Basic Solid State Phys. (2020). https://doi.org/10.1002/pssb.202000131

    Article  Google Scholar 

  7. 7.

    Serra, R., Miró, E., Sapag, M.K., Boix, A.: Adsorption and diffusion of toluene on Na and Cs mordenites for hydrocarbon traps. Microporous Mesoporous Mater. 138, 102–109 (2011)

    CAS  Article  Google Scholar 

  8. 8.

    Serra, R., Miró, E., Bolcatto, P., Boix, A.: Experimental and theoretical studies about the adsorption of toluene on ZSM5 and mordenite zeolites modified with Cs. Microporous Mesoporous Mater. 147, 17–29 (2012)

    Article  CAS  Google Scholar 

  9. 9.

    Serra, R., Aspromonte, A., Miró, E., Boix, A.: Hydrocarbon adsorption and NOx-SCR on (Cs, Co) mordenite. Appl. Catal. B 166, 592–602 (2015)

    Article  CAS  Google Scholar 

  10. 10.

    Sels, B. F., Kustov, L. M. (eds.) Zeolites and zeolite-like materials, Elsevier (2016). Zeolyst International Available from: http://www.zeolyst.com.

  11. 11.

    Torres, F.J., Vitillo, J.G., Civalleri, B., Ricchiardi, G., Zecchina, A.: Interaction of H2 with alkali-metal-exchanged zeolites:a quantum mechanical study. J. Phys. Chem. C 111, 2505–2513 (2007)

    CAS  Article  Google Scholar 

  12. 12.

    Siriwardane, R.V., Shen, M., Fisher, E.P.: Adsorption of CO2 on zeolites at moderate temperatures. Energ. Fuel. 19, 1153–1159 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    Stevens, R., Siriwardane, R., Jr., Logan, J.: In situ fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energy Fuel 22, 3070–3079 (2008)

    CAS  Article  Google Scholar 

  14. 14.

    Villarreal, A., Garbarino, G., Riani, P., Finocchio, E., Bosio, B., Ramírez, J., Busca, G.: Adsorption and separation of CO2 from N2-rich gas on zeolites: Na-X faujasite vs Na-mordenite. J. CO2 Util. 19, 266–275 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    Bonelli, B., Civalleri, B., Fubini, B., Ugliengo, P., Areán, C., Garrone, E.: Experimental and quantum chemical studies on the adsorption of carbon dioxide on alkali-metal-exchanged ZSM-5 zeolites. J. Phys. Chem. B 104, 10978–10988 (2000)

    CAS  Article  Google Scholar 

  16. 16.

    Larin, A.V.: Role of cation size for hydrogen carbonate stabilization and modification of the zeolite CO2 interaction energy: computational analysis in alkali Y zeolites. Microporous Mesoporous Mater. 228, 182–195 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Walton, K., Abney, M., Douglas Levan, M.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and Mesoporous Mater. 91, 78–84 (2006)

    CAS  Article  Google Scholar 

  18. 18.

    Maurin, G., Bell, R., Devautour, S., Hennand, F., Giuntini, J.: Modelling the effect of hydration in zeolite Na+-mordenite. J. Phys. Chem. B. 108, 3739–3745 (2004)

    CAS  Article  Google Scholar 

  19. 19.

    Vilhena, F.S., Serra, R., Boix, A., Ferreira, G.B., Carneiro, J.W.M.: DFT study of Li+ and Na+ positions in mordenites and hydration stability. Comput. Theor. Chem. 1091, 115–121 (2016)

    Article  CAS  Google Scholar 

  20. 20.

    Barthomeuf, D.: Basic zeolites characterization and uses in adsorption and catalysis. Catal. Rev. Sci. Eng. 38(4), 521–612 (1996)

    Article  Google Scholar 

  21. 21.

    Pham, T., Lobo, R.: Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT-, and RRO-type siliceous zeolites. Microporous Mesoporous Mater. 236, 100–108 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    Zeolyst International (2019) Available from: https://www.zeolyst.com

  23. 23.

    Lippens, B.C., Linsen, B.G., de Boer, J.H.: Studies on pore systems in catalysts. J. Catal. 3, 32–37 (1964)

    CAS  Article  Google Scholar 

  24. 24.

    Holzapfel, M., Haak, C., Ott, A.: Lithium-ion conductors of the system LiCo12xFexO2, preparation and structural investigation. J. Solid State Chem. 156, 470–479 (2001)

    CAS  Article  Google Scholar 

  25. 25.

    Coelho, A.: TOPAS-Academic v5. Coehlo Software, Brisbane, Australia (2012)

    Google Scholar 

  26. 26.

    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)

    CAS  Article  Google Scholar 

  27. 27.

    Klug, H.P., Alexander, L.E.: X-ray difraction procedures for polycrystalline and amorphous material. Wiley-Interscience, New York (1974)

    Google Scholar 

  28. 28.

    IZA: Database of Zeolite structure (2019). http://www.iza-structure.org/database/.

  29. 29.

    Baerlocher, Ch., Lynne, B., McCusker, D.H., Olson, D.H.: Atlas of zeolite framework types, 6th edn., pp. 218–219. Elsevier, Amsterdam (2007)

    Google Scholar 

  30. 30.

    Cejka, J., Corma, A., Zones, S., Weinheim, J.: Zeolites and catalysis: Synthesis reactions and applications. John Wiley and Sons, USA (2010)

    Google Scholar 

  31. 31.

    Blochl, P.E., Forst, C.J., Schimpl, J.: Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull. Mater. Sci. 26, 33–41 (2003)

    CAS  Article  Google Scholar 

  32. 32.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    VandeVondele, J., Hutter, J.: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105–114109 (2007)

    Article  CAS  Google Scholar 

  34. 34.

    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    CAS  Article  Google Scholar 

  35. 35.

    Breck, D.: Zeolite molecular sieves, pp. 530–536. John Wiley and Sons, USA (1974)

    Google Scholar 

  36. 36.

    Geobaldo, F., Lamberti, C., Ricchiardi, G., Bordiga, S., Zecchina, A., Palomino, G., Areán, C.: N2 adsorption at 77 K on H-mordenite and alkali-metal-exchanged mordenites: an IR study. J. Phys. Chem. 99, 11167–11177 (1995)

    CAS  Article  Google Scholar 

  37. 37.

    Treacy, M.M.J., Higgins, J.B.: Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam (2007)

    Google Scholar 

  38. 38.

    Boix, A., García Fierro, J.L.: XPS analysis of platinum and/or cobalt-loaded zeolites relevant for SCR reaction. Surf. Interface Anal. 27, 1107–1113 (1999)

    CAS  Article  Google Scholar 

  39. 39.

    Karge, H., Weitkamp, J. 2003 “Molecular sieves, characterization I” Springer

  40. 40.

    Garrone, E., Bonelli, B., Lamberti, C., Civalleri, B., Rocchia, M., Roy, P., Otero, C.: Coupling of framework modes and adsorbate vibrations for CO2 molecularly adsorbed on alkali ZSM-5 zeolites: Mid- and far-infrared spectroscopy and ab initio modeling. J. ChemPhys 117, 10274–10282 (2002)

    CAS  Google Scholar 

  41. 41.

    Martra, G., Coluccia, S., Davit, P., Gianotti, E., Marchese, L., Tsuji, H., Hattori, H.: Acidic and basic sites in NaX and NaY faujasites investigated by NH3, CO2 and CO molecular probes. Res. Chem. Intermed. 25, 77–93 (1999)

    CAS  Article  Google Scholar 

  42. 42.

    Martra, G., Ocule, R., Marchese, L., Centi, G., Coluccia, S.: Alkali and alkaline-earth exchanged faujasites: strength of lewis base and acid centres and cation site occupancy in Na- and BaY and Na- and BaX zeolites. Catal. Today 73, 83–93 (2002)

    CAS  Article  Google Scholar 

  43. 43.

    Maurin, G., Llewellyn, P.L., Bell, R.: Adsorption mechanism of carbon dioxide in faujasites: grand canonical Monte Carlo simulations and microcalorimetry measurements. J. Phys. Chem. B 109, 16084–16091 (2005)

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wong-Ng, W., Kaduk, J.A., Huang, Q., Espinal, L., Li, L., Burress, J.W.: Investigation of NaY Zeolite with adsorbed CO2 by neutron powder diffraction. Microporous and Mesoporous Mater. 172, 95–104 (2013)

    CAS  Article  Google Scholar 

  45. 45.

    Joos, L., Swisher, J.A., Smit, B.: Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X. Langmuir 29, 15936–15942 (2013)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Pulido, A., Delgado, M.R., Bludsky, O., Rubes, M., Nachtigall, P., Areán, C.O.: Combined DFT/CC and IR spectroscopic studies on carbon dioxide adsorption on the zeolite H-FER. Energy Environ. Sci. 2, 1187–1195 (2009)

    CAS  Article  Google Scholar 

  47. 47.

    Chu, C.T.W., Chang, C.D.: Isomorphous substitution in zeolite frameworks. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [AI]-ZSM-5. J. Phys. Chem. 89, 1569–1571 (1985)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Agencia Nacional de Promoción Científica y Tecnología (ANPCyT) and CONICET for the financial support of this study. This research was supported by a grant from the Brazilian agency CAPES (PNPD program) and by the Bilateral Cooperation Project FAPERJ-CONICET (Grant Number E-26/110.041/2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alicia V. Boix.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serra, R.M., de Vilhena, F.S., Gutierrez, L.B. et al. Experimental and theoretical investigation of the Na+  → Li+ cation exchange in mordenite and its effect on CO2 adsorption properties. Adsorption (2021). https://doi.org/10.1007/s10450-020-00288-3

Download citation

Keywords

  • Mordenite
  • Alkaline cations
  • Adsorption energy
  • CO2
  • FTIR
  • Periodical calculations