Skip to main content
Log in

Self-assembly of the surfactant mixtures on graphene in the presence of electrolyte: a molecular simulation study

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The insolubility of graphene nanosheets in aqueous media has been a limitation for the practical applications of this unique material. The non-covalent functionalization of graphene with mixed surfactants is an effective procedure for preparation of stable graphene dispersions. Physical adsorption of surfactants onto graphene surfaces is a significant stage in the dispersion of graphene nanosheets in the aqueous environment. Studies have shown that the presence of electrolyte greatly affects the adsorption process of pure surfactants on solid surfaces. Examination of mixed surfactants adsorption on graphene in the presence of electrolyte will help to better understand the mechanism of molecular interactions between the graphene nanosheets and mixed surfactants. Therefore, in this study, we used molecular dynamics simulations to investigate the adsorption of mixed surfactants on graphene in the presence of electrolyte and to study the morphology of assemblies formed from mixed surfactants on graphene. We investigate the effects of electrolyte concentration and surface coverage of surfactants' mixture on the adsorption process and structural changes in the assemblies formed on graphene nanosheets. We have found that increasing the ionic strength of electrolyte reinforces stretching of surfactants adsorbed on graphene toward the aqueous phase, and this leads to a clear volume expansion in the structure of graphene-surfactant mixture hemi-spherical micelles. In fact, screening effect of electrolyte ions on electrostatic repulsion between charged head-groups made molecules approach each other, leading to a more compact assembly of surfactants on graphene surface. As hemi-spherical micelles of mixed surfactants-graphene expanded, the steric repulsion between these micelles also increased, which in turn, inhibited the re-aggregation of graphene sheets covered with surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    CAS  PubMed  Google Scholar 

  • Atkin, R., Craig, V.S.J., Biggs, S.: Adsorption kinetics and structural arrangements of cationic surfactants on silica surfaces. Langmuir 16, 9374–9380 (2000)

    CAS  Google Scholar 

  • Auffinger, P., Cheatham, T.E., Vaiana, A.C.: Spontaneous formation of \uppercase KCl aggregates in biomolecular simulations: a force field issue? J. Chem. Theory Comput. 3, 1851–1859 (2007)

    CAS  PubMed  Google Scholar 

  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    CAS  Google Scholar 

  • Cai, M., Thorpe, D., Adamson, D.H., Schniepp, H.C.: Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012)

    CAS  Google Scholar 

  • Chialvo, A.A., Simonson, J.M.: The structure of CaCl2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation. J. Chem. Phys. 119, 8052–8061 (2003)

    CAS  Google Scholar 

  • Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    CAS  Google Scholar 

  • Ciesielski, A., Samorì, P.: Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014)

    CAS  PubMed  Google Scholar 

  • Coleman, J.N.: Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680–3695 (2009)

    CAS  Google Scholar 

  • Dai, L.: Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31–42 (2013)

    CAS  PubMed  Google Scholar 

  • Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)

    CAS  Google Scholar 

  • Duque, J.G., Densmore, C.G., Doorn, S.K.: Saturation of surfactant structure at the single-walled carbon nanotube surface. J. Am. Chem. Soc. 132, 16165–16175 (2010)

    CAS  PubMed  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  PubMed  Google Scholar 

  • Green, A.A., Hersam, M.C.: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009)

    CAS  PubMed  Google Scholar 

  • Grossiord, N., van der Schoot, P., Meuldijk, J., Koning, C.E.: Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution. Langmuir 23, 3646–3653 (2007)

    CAS  PubMed  Google Scholar 

  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    CAS  PubMed  Google Scholar 

  • Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    CAS  PubMed  Google Scholar 

  • Imanishi, A., Suzuki, M., Nakato, Y.: In situ AFM studies on self-assembled monolayers of adsorbed surfactant molecules on well-defined H-Terminated Si (111) surfaces in aqueous solutions. Langmuir 23, 12966–12972 (2007)

    CAS  PubMed  Google Scholar 

  • Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: Solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003)

    CAS  Google Scholar 

  • Lamont, R.E., Ducker, W.A.: Surface-induced transformations for surfactant aggregates. J. Am. Chem. Soc. 120, 7602–7607 (1998)

    CAS  Google Scholar 

  • Lin, S., Shih, C.J., Strano, M.S., Blankschtein, D.: Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. J. Am. Chem. Soc. 133, 12810–12823 (2011)

    CAS  PubMed  Google Scholar 

  • Liu, S., Wu, B., Yang, X.: Electrolyte-induced reorganization of SDS self-assembly on graphene: a molecular simulation study. ACS Appl. Mater. Interfaces. 6, 5789–5797 (2014)

    CAS  PubMed  Google Scholar 

  • Liu, S., Wu, D., Yang, X.: Coarse-grained molecular simulation of self-assembly nanostructures of CTAB on nanoscale graphene. Mol. Simul. 42, 31–38 (2016)

    Google Scholar 

  • Lokar, W.J., Ducker, W.A.: Proximal adsorption of dodecyltrimethylammonium bromide to the silica—electrolyte solution interface. Langmuir 18, 3167–3175 (2002)

    CAS  Google Scholar 

  • Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Zhiming, W., McGovern, I.T., Duesberg, G.S., Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)

    CAS  PubMed  Google Scholar 

  • Lotya, M., King, P.J., Khan, U., De, S., Coleman, J.N.: High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010)

    CAS  PubMed  Google Scholar 

  • Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)

    PubMed  Google Scholar 

  • Miyamoto, S., Kollman, P.A.: SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J. Comp. Chem. 13, 952–962 (1992)

    CAS  Google Scholar 

  • Mohr, A., Nylander, T., Piculell, L., Lindman, B., Boyko, V., Bartels, F.W., Liu, Y., Kurkal-Siebert, V.: Mixtures of cationic copolymers and oppositely charged surfactants: effect of polymer charge density and ionic strength on the adsorption behavior at the silica-aqueous interface. ACS Appl. Mater. Interfaces. 4, 1500–1511 (2012)

    CAS  PubMed  Google Scholar 

  • Niyogi, S., Boukhalfa, S., Chikkannanavar, S.B., Mcdonald, T.J., Heben, M.J., Doorn, S.K.: Selective aggregation of single-walled carbon nanotubes via salt addition. JACS Commun. 10–11 (2007).

  • Niyogi, S., Densmore, C.G., Doorn, S.K., Soc, J.A.C., Asap, A.: Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. Society 131, 1144–1153 (2009)

    CAS  Google Scholar 

  • Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CAS  PubMed  Google Scholar 

  • Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)

    CAS  Google Scholar 

  • Patra, M., Karttunen, M.: Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: diffusion, free energy of hydration, and structural properties. J. Comput. Chem. 25, 678–689 (2004)

    CAS  PubMed  Google Scholar 

  • Poorgholami-Bejarpasi, N., Sohrabi, B.: Self-assembly of cationic surfactants on the carbon nanotube surface: insights from molecular dynamics simulations. J. Mol. Model. 19, 4319–4335 (2013)

    CAS  PubMed  Google Scholar 

  • Poorsargol, M., Sohrabi, B., Dehestani, M.: Study of the Gemini surfactants’ self-assembly on graphene nanosheets: insights from molecular dynamic simulation. J. Phys. Chem. A. 122, 3873–3885 (2018)

    CAS  PubMed  Google Scholar 

  • Poorsargol, M., Alimohammadian, M., Sohrabi, B., Dehestani, M.: Dispersion of graphene using surfactant mixtures: experimental and molecular dynamics simulation studies. Appl. Surf. Sci. 464, 440–450 (2019)

    CAS  Google Scholar 

  • Poorsargol, M., Razmara, Z., Amiri, M.M.: The role of hydroxyl and carboxyl functional groups in adsorption of copper by carbon nanotube and hybrid graphene–carbon nanotube: insights from molecular dynamic simulation. Adsorption. 26, 397–405 (2020)

    CAS  Google Scholar 

  • Qu, L., Liu, Y., Baek, J.B., Dai, L.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    CAS  PubMed  Google Scholar 

  • Rafiee, M.A.: Graphene-based composite materials. Nature 442, 282–286 (2011)

    Google Scholar 

  • Sandwich, S., Wang, Z., Wang, W., Coombs, N., Soheilnia, N., Ozin, G.: Graphene oxide—periodic mesoporous vertically oriented channels. ACS Nano 4, 7437–7450 (2010)

    Google Scholar 

  • Silvera-Batista, C.A., Scott, D.C., McLeod, S.M., Ziegler, K.J.: A mechanistic study of the selective retention of SDS-suspended single-wall carbon nanotubes on agarose gels. J. Phys. Chem. C. 115, 9361–9369 (2011)

    CAS  Google Scholar 

  • Stiernstedt, J., Fröberg, J.C., Tiberg, F., Rutland, M.W.: Forces between silica surfaces with adsorbed cationic surfactants: influence of salt and added nonionic surfactants. Langmuir 21, 1875–1883 (2005)

    CAS  PubMed  Google Scholar 

  • Tummala, N.R., Striolo, A.: Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. J. Phys. Chem. B. 112, 1987–2000 (2008)

    CAS  PubMed  Google Scholar 

  • Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98 (1967)

    CAS  Google Scholar 

  • Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L.V., Zhang, J., Aksay, I.A., Liu, J.: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)

    CAS  PubMed  Google Scholar 

  • Wang, D., Kou, R., Choi, D., Yang, Z., Nie, Z., Li, J., Saraf, L.V.: Ternary self-assembly of ordered metal oxide/graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587–1595 (2010)

    CAS  PubMed  Google Scholar 

  • Wanless, E.J., Ducker, W.: Organization of sodium dodecyl sulfate at the graphite-solution interface. J. Phys. Chem. 100, 3207–3214 (1996)

    CAS  Google Scholar 

  • Wu, B., Yang, X.: Molecular simulation of electrolyte-induced interfacial interaction between SDS/graphene assemblies. J. Phys. Chem. C. 117, 23216–23223 (2013)

    CAS  Google Scholar 

  • Xu, Z., Yang, X., Yang, Z.: A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies. Nano Lett. 10, 985–991 (2010)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Iran University of Science and Technology, Shahid Bahonar University of Kerman support us indeed in this work very much. Therefore, we want to thanks them absolute for all their helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beheshteh Sohrabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorsargol, M., Sohrabi, B. & Dehestani, M. Self-assembly of the surfactant mixtures on graphene in the presence of electrolyte: a molecular simulation study. Adsorption 27, 69–79 (2021). https://doi.org/10.1007/s10450-020-00264-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00264-x

Keywords

Navigation