Skip to main content
Log in

Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Synthesis and application of layered nanomaterials are known as emerging field in nanotechnology. Inorganic layered nanomaterials with nanometer scale, high aspect ratios, and large-surface area generate various scientific and technological interests in several potential areas of application such as separation technology, medical sciences, chromatography drug delivery, and catalysis. In this research, naproxen was opted as a unique model of the drug to intercalate into three-dimensional layered double hydroxide (LDH) nanostructures by calcination–reconstruction method. The designed-naproxen nanostructures were synthesized and used as novel drug nanocarriers. The synthesized nanomaterial characteristics were confirmed by FTIR, XRD, and SEM. The results of antibacterial activity indicated that homemade nanostructure can inhibit bacterial growth. Furthermore, MTT assay analysis showed that synthesized-nanostructure in physiological concentration has not cytotoxicity on C2C12 myoblast cells in vitro. Subsequent to intercalation with naproxen according to calcination–reconstruction method, the basal spacing of LDH increased to 2.62 nm from primary 0.77 nm in diameter, which confirms successful intercalation of naproxen into inserted layer of LDH by bridging interaction. Also, in-vitro drug release tests in PBS (pH 7.4) showed constant release profile for naproxen. Consequently, due to the facile and low-cost fabrication of three-dimensional LDH nanostructure, it can be considered as a potential alternative for traditional and high cost drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bonina, F.P., Giannossi, M.L., Medici, L., Puglia, C., Summa, V., Tateo, F.: Adsorption of salicylic acid on bentonite and kaolin and release experiments. Appl. Clay Sci. 36(1–3), 77–85 (2007)

    Article  CAS  Google Scholar 

  • Chen, M., Cooper, H.M., Zhou, J.Z., Bartlett, P.F., Xu, Z.P.: Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery. J. Colloid Interface Sci. 390(1), 275–281 (2013)

    Article  CAS  Google Scholar 

  • Choy, J.H., Jung, J.S., Oh, J.M., Park, M., Jeong, J., Kang, Y.K., Han, O.J.: Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 25(15), 3059–3064 (2004)

    Article  CAS  Google Scholar 

  • Du, Y., Hu, G., O'Hare, D.: Nucleation and growth of oriented layered hydroxides on polymer resin beads. J. Mater. Chem. 19(8), 1160–1165 (2009)

    Article  CAS  Google Scholar 

  • Ennahar, S., Deschamps, N.: Anti-listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J. Appl. Microbiol. 88(3), 449–457 (2000)

    Article  CAS  Google Scholar 

  • Evans, D.G., Slade, R.C.: Layered double hydroxides. Struct. Bond 119, 1–87 (2006)

    CAS  Google Scholar 

  • Ghorbani, M., Hamishehkar, H., Hajipour, H., Arsalani, N., Entezami, A.A.: Ternary-responsive magnetic nanocarriers for targeted delivery of thiol-containing anticancer drugs. New J. Chem. 40(4), 3561–3570 (2016)

    Article  CAS  Google Scholar 

  • Goodwin, J.W., Ottewill, R.H., Pelton, R., Vianello, G., Yates, D.E.: Control of particle size in the formation of polymer latices. Br. Polym. J. 10, 173–180 (1978). https://doi.org/10.1002/pi.4980100304

    Article  CAS  Google Scholar 

  • Gunawan, P., Xu, R.: Synthesis of unusual coral-like layered double hydroxide microspheres in a nonaqueous polar solvent/surfactant system. J. Mater. Chem. 18, 2112–2120 (2008). https://doi.org/10.1039/B719817E

    Article  CAS  Google Scholar 

  • Haas, M., Kluppel, A.C.A., Wartna, E.S., Moolenaar, F., Meijer, D.K.F., De Jong, P.E., De Zeeuw, D.: Drug-targeting to the kidney: renal delivery and degradation of a naproxen-lysozyme conjugate in vivo. Kidney Int. 52, 1693–1699 (1997). https://doi.org/10.1038/KI.1997.504

    Article  PubMed  CAS  Google Scholar 

  • Hajipour, H., Hamishehkar, H., Rahmati-yamchi, M., Shanehbandi, D., Nazari Soltan Ahmad, S., Hasani, A.: Enhanced anti-cancer capability of ellagic acid using solid lipid nanoparticles (SLNs). Int. J. Cancer Manage. (2018). https://doi.org/10.5812/ijcm.9402

    Article  Google Scholar 

  • Hajipour, H., Ghorbani, M., Kahroba, H., Mahmoodzadeh, F., Emameh, R.Z., Taheri, R.A.: Arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier co-loaded with doxorubicin and sildenafil citrate enhanced anti-cancer effects and overcomes drug resistance. Process. Biochem. (2019). https://doi.org/10.1016/J.PROCBIO.2019.06.013

    Article  Google Scholar 

  • Javadzadeh, Y., Ahadi, F., Davaran, S., Mohammadi, G., Sabzevari, A., Adibkia, K.: Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids Surf. B Biointerfaces 81, 498–502 (2010). https://doi.org/10.1016/J.COLSURFB.2010.07.047

    Article  PubMed  CAS  Google Scholar 

  • Karami, Z., Sadighian, S., Rostamizadeh, K., Parsa, M., Rezaee, S.: Naproxen conjugated mPEG–PCL micelles for dual triggered drug delivery. Mater. Sci. Eng. C 61, 665–673 (2016). https://doi.org/10.1016/j.msec.2015.12.067

    Article  CAS  Google Scholar 

  • Ladewig, K., Xu, Z.P., Lu, G.Q.: Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Deliv. 6, 907–922 (2009). https://doi.org/10.1517/17425240903130585

    Article  PubMed  CAS  Google Scholar 

  • Mishra, A., Agrawal, S., Pathak, K.: Naproxen glycine conjugate-synthesis, pharmaceutical preformulation and pharmacodynamic evaluation. Drug Deliv. 19, 102–111 (2012). https://doi.org/10.3109/10717544.2011.649218

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, D.P., Palve, Y.P., Sahoo, D., Nayak, P.: Synthesis and characterization of chitosan/cloisite 30B (MMT) nanocomposite for controlled release of anticancer drug curcumin. Int. J. Pharm. Res. Allied Sci. 1, 52–62 (2012)

    CAS  Google Scholar 

  • Montazersaheb, S., Kazemi, M., Nabat, E., Nielsen, P.E., Hejazi, M.S.: Downregulation of TdT expression through splicing modulation by antisense peptide nucleic acid (PNA). Curr. Pharm. Biotechnol. 20, 168–178 (2019). https://doi.org/10.2174/1389201020666190206202650

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto, K.: Infrared and Raman spectra of inorganic and coordination compounds, p. 226. Whey, New York (1977)

    Google Scholar 

  • Özkaya, T., Toprak, M.S., Baykal, A., Kavas, H., Köseoglu, Y., Aktas, B.: J. Alloy. Compd. 472, 18–23 (2009)

    Article  CAS  Google Scholar 

  • Rojas, R., Palena, M.C., Jimenez-Kairuz, A.F., Manzo, R.H., Giacomelli, C.E.: Modeling drug release from a layered double hydroxide–ibuprofen complex. Appl. Clay Sci. 62, 15–20 (2012)

    Article  CAS  Google Scholar 

  • Sahoo, S., Chakraborti, C.K., Behera, P.K.: Development and evaluation of gastroretentive controlled release polymeric suspensions containing ciprofloxacin and carbopol polymers. J. Chem. Pharm. Res. 4, 2268–2284 (2012)

    CAS  Google Scholar 

  • Tarhriz, V., Wagner, K.-D., Masoumi, Z., Molavi, O., Hejazi, M.S., Ghanbarian, H.: CDK9 regulates apoptosis of myoblast cells by modulation of microRNA-1 expression. J. Cell. Biochem. 119, 547–554 (2018). https://doi.org/10.1002/jcb.26213

    Article  PubMed  CAS  Google Scholar 

  • Todd, P.A., Clissold, S.P.: Naproxen A reappraisal of its pharmacology, and therapeutic use in rheumatic diseases and pain states. Drugs 40, 91–137 (1990). https://doi.org/10.2165/00003495-199040010-00006

    Article  PubMed  CAS  Google Scholar 

  • Vane, J.R.: Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs. Nat. New Biol. 231, 232–235 (1971). https://doi.org/10.1038/newbio231232a0

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Hu, C., Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  • Wong, Y., Markham, K., Xu, Z.P., Chen, M., Lu, G.Q.M., Bartlett, P.F., Cooper, H.M.: Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials 31(33), 8770–8779 (2010)

    Article  CAS  Google Scholar 

  • Xu, Z.P., Lu, G.M.: Layered double hydroxide nanomaterials as potential cellular drug delivery agents. Pure Appl. Chem. 78(9), 1771–1779 (2006)

    Article  CAS  Google Scholar 

  • Xu, Z.P., Stevenson, G.S., Lu, C.-Q., Lu, G.Q., Bartlett, P.F., Gray, P.P.: Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 128, 36–37 (2006a). https://doi.org/10.1021/ja056652a

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z.P., Zeng, Q.H., Lu, G.Q., Yu, A.B.: Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61(3), 1027–1040 (2006b)

    Article  CAS  Google Scholar 

  • Xu, Z.P., Niebert, M., Porazik, K., Walker, T.L., Cooper, H.M., Middelberg, A.P., Gray, P.P., Bartlett, P.F., Lu, G.Q.M.: Subcellular compartment targeting of layered double hydroxide nanoparticles. J. Control Release 130(1), 86–94 (2008)

    Article  CAS  Google Scholar 

  • Yazdani, P., Mansouri, E., Eyvazi, S., Yousefi, V., Kahroba, H., Hejazi, M.S., Mesbahi, A., Tarhriz, V., Abolghasemi, M.M.: Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artif. Cells Nanomed. Biotechnol. 47, 436–442 (2019). https://doi.org/10.1080/21691401.2018.1559182

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., He, R., Gu, H.C.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253(5), 2611–2617 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. Mohammad Saeid Hejazi for kind advice and providing the laboratory facilities and Dr. Houman Kahroba for his helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

Elham Mansouri, Vahideh Tarhriz and Vahid Yousefi conceived, designed and conducted experiments and analyzed data. Azita Dilmaghani provide the experimental materials. Vahideh Tarhriz and Vahid Yousefi wrote the manuscript. Vahideh Tarhriz and Azita dilmaghani revised and rechecked the manuscript.

Corresponding author

Correspondence to Azita Dilmaghani.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, E., Tarhriz, V., Yousefi, V. et al. Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route. Adsorption 26, 835–842 (2020). https://doi.org/10.1007/s10450-020-00217-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00217-4

Keywords

Navigation