Skip to main content

The effect of encapsulation of lithium atom on supramolecular triad complexes performance in solar cell by using theoretical approach

Abstract

Solar energy is the most important type of modern and renewable energies. If it displaces fossil fuels, can bring an end to concerns about finiteness of fuels, environmental pollution caused by fossil fuels, price fluctuations and energy crisis. Among the energy sources, due to the high potential of solar energies in wide areas of the world, it has great importance to researchers. Dye-sensitized solar cells (DSSCs) representation one of the most hopefully is appearing technologies for sunlight-to-electrical energy transformation. In the present research density functional theory and time-dependent semiempirical ZINDO/S (TD-ZINDO/S) methods have been used to investigate two series of triad system containing fullerene, porphyrin (P), and metalloporphyrin (Mp) as a dye sensitizer. In the first series, C60–porphyrin–metalloporphyrin (C60–P–Mp) triad system with M being Mg, Sc, Ti, Mn, Fe, Co, and Zn was investigated and in the second series, Li@C60 replaced with C60 (Li@C60–P–Mp). The influences of the type of metal in the P ring, and insertion of Li in the C60 on the energies of frontier molecular orbital and UV–Vis spectra have been studied. Structural optimizations of triad systems are carried out using the SIESTA package of program and the energy levels and electron density of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, chemical hardness (η), electrophilicity index (ω), and electron accepting power (ω +). Moreover, the light harvesting efficiency was calculated by means of the oscillator strengths, which are obtained by TD-ZINDO/S calculation. Calculation results showed that three complexes Li@C60–P–ScP, Li@C60–P–CoP, Li@C60–P–MnP with low energy gap make these potential triad complexes in photovoltaic applications and are also excellent efficient as DSSC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alavi, H., Ghiasi, R., Ghazanfari, D., Akhgar, M.R.: Interaction of Fe(CO)4 with C20 cage in gas and solution phases: a theoretical study. Rev. Roum. Chim. 59, 883–891 (2014)

    Google Scholar 

  • Allouche, A.R.: Gabedit—a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32(1), 174–182 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Anderson, W.P., Cundari, T.R., Drago, R.S., Zerner, M.C.: Utility of the semiempirical INDO/1 method for the calculation of the geometries of second-row transition-metal species. Inorg. Chem. 29(1), 1–3 (1990)

    Article  CAS  Google Scholar 

  • Anderson, W.P., Cundari, T.R., Zerner, M.C.: An intermediate neglect of differential overlap model for second-row transition metal species. Int. J. Quantum Chem. 39(1), 31–45 (1991)

    Article  CAS  Google Scholar 

  • Ayabe, M., Ikeda, A., Kubo, Y., Takeuchi, M., Shinkai, S.: A dendritic porphyrin receptor for C60 which features a profound positive allosteric effect. Angew. Chem. Int. Ed. 41(15), 2790–2792 (2002)

    Article  CAS  Google Scholar 

  • Basiuk, V.A.: Interaction of porphine and its metal complexes with C60 fullerene: a DFT study. J. Phys. Chem. A 109(16), 3704–3710 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)

    Article  CAS  Google Scholar 

  • Boyd, P.D., Hodgson, M.C., Rickard, C.E., Oliver, A.G., Chaker, L., Brothers, P.J., Bolskar, R.D., Tham, F.S., Reed, C.A.: Selective supramolecular porphyrin/fullerene interactions. J. Am. Chem. Soc. 121(45), 10487–10495 (1999)

    Article  CAS  Google Scholar 

  • Burke, K., Werschnik, J., Gross, E.: Time-dependent density functional theory: past, present, and future. J. Chem. Phys. 123(6), 062206 (2005)

    Article  CAS  Google Scholar 

  • Curiel, D., Ohkubo, K., Reimers, J.R., Fukuzumi, S., Crossley, M.J.: Photoinduced electron transfer in a β, β′-pyrrolic fused ferrocene–(zinc porphyrin)–fullerene. Phys. Chem. Chem. Phys. 9(38), 5260–5266 (2007)

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, F., Deviprasad, G.R., El-Khouly, M.E., Fujitsuka, M., Ito, O.: Probing the donor–acceptor proximity on the physicochemical properties of porphyrin–fullerene dyads: “Tail-On” and “Tail-Off” binding approach. J. Am. Chem. Soc. 123(22), 5277–5284 (2001)

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, F., Deviprasad, G.R., Zandler, M.E., El-Khouly, M.E., Fujitsuka, M., Ito, O.: Electronic interactions and photoinduced electron transfer in covalently linked porphyrin–C60 (pyridine) dyads and supramolecular triads formed by self-assembling the dyads and zinc porphyrin. J. Phys. Chem. B 106(19), 4952–4962 (2002)

    Article  CAS  Google Scholar 

  • de Oliveira, O.V., da Silva, G.A.: Quantum chemical studies of endofullerenes (M@C60) where M = H2O, Li+, Na+, K+, Be2+, Mg2+, and Ca2+. Comput. Chem. 2(04), 51 (2014)

    Article  CAS  Google Scholar 

  • Fabian, J.: Electronic excitation of sulfur-organic compounds—performance of time-dependent density functional theory. Theor. Chem. Acc. 106(3), 199–217 (2001)

    Article  CAS  Google Scholar 

  • Fukuzumi, S., Ohkubo, K.: Long-lived photoinduced charge separation for solar cell applications in supramolecular complexes of multi-metalloporphyrins and fullerenes. Dalton Trans. 42(45), 15846–15858 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Gázquez, J.L.: Hardness and softness in density functional theory. In: Chemical Hardness, pp. 27–43. Springer, Berlin (1993)

  • Gazquez, J.L., Cedillo, A., Vela, A.: Electrodonating and electroaccepting powers. J. Phys. Chem. A 111(10), 1966–1970 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Ghiasi, R., Aghazadeh Kozeh Kanani, F.: Theoretical insights of the electronic structures, conductivity, and aromaticity of Graphyne and Si-doped Graphynes. Asian J. Nanosci. Mater. 1(4, pp. 172–293), 234–243 (2018)

    Google Scholar 

  • Ghiasi, R., Sadeghi, N.: Evolution of the interaction between C20 cage and Cr(CO)5: a solvent effect, QTAIM and EDA investigation. J. Theor. Comput. Chem. 16(01), 1750007 (2017)

    Article  CAS  Google Scholar 

  • Ghiasi, R., Pasdar, H., Ghaffarpour, Z.: Computational insights on the structure and properties of C24, C18B3N3, C12B6N6 and their endohedral complexes with alkaline and earth alkaline metals. Fuller. Nanotubes Carbon Nanostruct. 21(7), 644–652 (2013)

    Article  CAS  Google Scholar 

  • Ghiasi, R., Bharifar, H., Hosseinzade, S., Zarinfard, M.A., Hakimyoun, A.H.: The stability and properties of Mn+@C. J. Appl. Chem. Res. 8(2), 29–36 (2014a)

    Google Scholar 

  • Ghiasi, R., Hadi, F., Hakimyuon, A.H.: A density functional approach toward structural features and properties of C. J. Appl. Chem. Res. 8(1), 55–65 (2014b)

    Google Scholar 

  • Gong, Z., Lagowski, J.B.: Electronic structure properties of fluorene–phenylene monomer and its derivatives: TD-DFT study. J. Mol. Struct. THEOCHEM 729(3), 211–222 (2005)

    Article  CAS  Google Scholar 

  • Grätzel, M.: Photoelectrochemical cells. Nature 414(6861), 338 (2001)

    Article  PubMed  Google Scholar 

  • Grätzel, M.: The light and shade of perovskite solar cells. Nat. Mater. 13(9), 838 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Guldi, D.M.: Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 31(1), 22–36 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Gust, D., Moore, T.A., Moore, A.L.: Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42(12), 1890–1898 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Hagfeldt, A., Grätzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33(5), 269–277 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., Arakawa, H.: Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. N. J. Chem. 27(5), 783–785 (2003a)

    Article  CAS  Google Scholar 

  • Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., Arakawa, H.: Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003b)

    Article  CAS  Google Scholar 

  • Hawkins, J.M., Meyer, A., Lewis, T.A., Loren, S., Hollander, F.J.: Crystal structure of osmylated C60: confirmation of the soccer ball framework. Science 252(5003), 312–313 (1991)

    Article  CAS  PubMed  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  Google Scholar 

  • Hu, Y.H., Ruckenstein, E.: Endohedral chemistry of C60-based fullerene cages. J. Am. Chem. Soc. 127(32), 11277–11282 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Imahori, H., Hagiwara, K., Aoki, M., Akiyama, T., Taniguchi, S., Okada, T., Shirakawa, M., Sakata, Y.: Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin–C60 dyads. J. Am. Chem. Soc. 118(47), 11771–11782 (1996)

    Article  CAS  Google Scholar 

  • Irfan, A., Al-Sehemi, A.G.: Quantum chemical study in the direction to design efficient donor–bridge–acceptor triphenylamine sensitizers with improved electron injection. J. Mol. Model. 18(11), 4893–4900 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Jasieniak, J., Johnston, M., Waclawik, E.R.: Characterization of a porphyrin-containing dye-sensitized solar cell. J. Phys. Chem. B 108(34), 12962–12971 (2004)

    Article  CAS  Google Scholar 

  • Kalyanasundaram, K., Grätzel, M.: Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 177(1), 347–414 (1998)

    Article  CAS  Google Scholar 

  • Kawashima, Y., Ohkubo, K., Fukuzumi, S.: Enhanced photoinduced electron-transfer reduction of Li+@C60 in comparison with C60. J. Phys. Chem. A 116(36), 8942–8948 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Kazemi, Z., Ghiasi, R., Jamehbozorgi, S.: Theoretical study of the influence of solvent polarity on the structure and spectral properties in the interaction of C20 and Si2H2. J. Nanoanal. 6(2), 121–128 (2019)

    Google Scholar 

  • Kesti, T.J., Tkachenko, N.V., Vehmanen, V., Yamada, H., Imahori, H., Fukuzumi, S., Lemmetyinen, H.: Exciplex intermediates in photoinduced electron transfer of porphyrin–fullerene dyads. J. Am. Chem. Soc. 124(27), 8067–8077 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  Google Scholar 

  • Lauher, J.W., Ibers, J.A.: Stereochemistry of cobalt porphyrins. II. Characterization and structure of meso-tetraphenylporphinatobis (imidazole) cobalt(III) acetate monohydrate monochloroformate, [Co(Im)2(TPP)][OAc]·H2O·CHCl3. J. Am. Chem. Soc. 96(14), 4447–4452 (1974)

    Article  CAS  PubMed  Google Scholar 

  • Malani, H., Zhang, D.: Theoretical insight for the metal insertion pathway of endohedral alkali metal fullerenes. J. Phys. Chem. A 117(16), 3521–3528 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Martin, R.E., Diederich, F.: Linear monodisperse π-conjugated oligomers: model compounds for polymers and more. Angew. Chem. Int. Ed. 38(10), 1350–1377 (1999)

    Article  Google Scholar 

  • Martínez, J.: Local reactivity descriptors from degenerate frontier molecular orbitals. Chem. Phys. Lett. 478(4–6), 310–322 (2009)

    Article  CAS  Google Scholar 

  • Mishra, A., Bäuerle, P.: Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51(9), 2020–2067 (2012)

    Article  CAS  Google Scholar 

  • Moser, J.E., Bonnóte, P., Grätzel, M.: Molecular photovoltaics. Coord. Chem. Rev. 171, 245–250 (1998)

    Article  Google Scholar 

  • Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., Grätzel, M.: Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X= Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)

    Article  CAS  Google Scholar 

  • Neese, F.: The ORCA program system. Wiley. Interdiscip. Rev. Comput. Mol. Sci. 2(1), 73–78 (2012)

    Article  CAS  Google Scholar 

  • O’regan B, Grätzel M: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737 (1991)

    Article  Google Scholar 

  • Olmstead, M.M., Costa, D.A., Maitra, K., Noll, B.C., Phillips, S.L., Van Calcar, P.M., Balch, A.L.: Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J. Am. Chem. Soc. 121(30), 7090–7097 (1999)

    Article  CAS  Google Scholar 

  • Ordejón, P., Artacho, E., Soler, J.M.: Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53(16), R10441 (1996)

    Article  Google Scholar 

  • Pan, J.-F., Chen, Z.-K., Chua, S.-J., Huang, W.: Protonation of bipyridines and their vinylene–phenylene–vinylene derivatives: theoretical analysis of the positive charge effects. J. Phys. Chem. A 105(38), 8775–8781 (2001)

    Article  CAS  Google Scholar 

  • Park, J.K., Lee, H.R., Chen, J., Shinokubo, H., Osuka, A., Kim, D.: Photoelectrochemical properties of doubly β-functionalized porphyrin sensitizers for dye-sensitized nanocrystalline-TiO2 solar cells. J. Phys. Chem. C 112(42), 16691–16699 (2008)

    Article  CAS  Google Scholar 

  • Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105(26), 7512–7516 (1983)

    Article  CAS  Google Scholar 

  • Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68(8), 3801–3807 (1978)

    Article  CAS  Google Scholar 

  • Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33(12), 8822 (1986)

    Article  CAS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Rezvani, M., Ganji, M.D., Jameh-Bozorghi, S., Niazi, A.: DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene–porphyrin–metalloporphyrin triads based dye-sensitized solar cells. Spectrochim. Acta A 194, 57–66 (2018)

    Article  CAS  Google Scholar 

  • Rochford, J., Chu, D., Hagfeldt, A., Galoppini, E.: Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. J. Am. Chem. Soc. 129(15), 4655–4665 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Portal, D., Ordejon, P., Artacho, E., Soler, J.M.: Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997)

    Article  Google Scholar 

  • Santhanamoorthi, N., Lo, C.-M., Jiang, J.-C.: Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study. J. Phys. Chem. Lett. 4(3), 524–530 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H.: Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J. Phys. Chem. B 106(6), 1363–1371 (2002)

    Article  CAS  Google Scholar 

  • Scuseria, G.E.: Ab initio theoretical predictions of the equilibrium geometries of C60, C60H60 and C60F60. Chem. Phys. Lett. 176(5), 423–427 (1991)

    Article  CAS  Google Scholar 

  • Shalabi, A., El Mahdy, A., Assem, M., Taha, H., Soliman, K.: Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells. J. Nanopart. Res. 16(9), 2579 (2014)

    Article  CAS  Google Scholar 

  • Soler, J., Artacho, E., Gale, J., Garcia, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002)

  • Soto-Rojo, R., Baldenebro-López, J., Glossman-Mitnik, D.: Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT. Phys. Chem. Chem. Phys. 17(21), 14122–14129 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A.K., Pandey, S.K., Misra, N.: Encapsulation of lawrencium into C60 fullerene: Lr@C60 versus Li@C60. Mater. Chem. Phys. 177, 437–441 (2016)

    Article  CAS  Google Scholar 

  • Stromberg, J.R., Marton, A., Kee, H.L., Kirmaier, C., Diers, J.R., Muthiah, C., Taniguchi, M., Lindsey, J.S., Bocian, D.F., Meyer, G.J.: Examination of tethered porphyrin, chlorin, and bacteriochlorin molecules in mesoporous metal-oxide solar cells. J. Phys. Chem. C 111(42), 15464–15478 (2007)

    Article  CAS  Google Scholar 

  • Sun, D., Tham, F.S., Reed, C.A., Boyd, P.D.: Extending supramolecular fullerene–porphyrin chemistry to pillared metal-organic frameworks. Proc. Natl Acad. Sci. USA 99(8), 5088–5092 (2002a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, D., Tham, F.S., Reed, C.A., Chaker, L., Boyd, P.D.: Supramolecular fullerene–porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J. Am. Chem. Soc. 124(23), 6604–6612 (2002b)

    Article  CAS  PubMed  Google Scholar 

  • Tkachenko, N.V., Rantala, L., Tauber, A.Y., Helaja, J., Hynninen, P.H., Lemmetyinen, H.: Photoinduced electron transfer in phytochlorin–[60] fullerene dyads. J. Am. Chem. Soc. 121(40), 9378–9387 (1999)

    Article  CAS  Google Scholar 

  • Tkachenko, N.V., Lemmetyinen, H., Sonoda, J., Ohkubo, K., Sato, T., Imahori, H., Fukuzumi, S.: Ultrafast photodynamics of exciplex formation and photoinduced electron transfer in porphyrin–fullerene dyads linked at close proximity. J. Phys. Chem. A 107(42), 8834–8844 (2003)

    Article  CAS  Google Scholar 

  • Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993 (1991)

  • Tsai, H., Asadpour, R., Blancon, J.-C., Stoumpos, C.C., Durand, O., Strzalka, J.W., Chen, B., Verduzco, R., Ajayan, P.M., Tretiak, S.: Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360(6384), 67–70 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Vehmanen, V., Tkachenko, N.V., Imahori, H., Fukuzumi, S., Lemmetyinen, H.: Charge-transfer emission of compact porphyrin–fullerene dyad analyzed by Marcus theory of electron-transfer. Spectrochim. Acta A 57(11), 2229–2244 (2001a)

    Article  CAS  Google Scholar 

  • Vehmanen, V., Tkachenko, N.V., Tauber, A.Y., Hynninen, P.H., Lemmetyinen, H.: Ultrafast charge transfer in phytochlorin–[60] fullerene dyads: influence of the attachment position. Chem. Phys. Lett. 345(3–4), 213–218 (2001b)

    Article  CAS  Google Scholar 

  • Vehmanen, V., Tkachenko, N.V., Efimov, A., Damlin, P., Ivaska, A., Lemmetyinen, H.: The role of the exciplex state in photoinduced electron transfer of phytochlorin–[60] fullerene dyads. J. Phys. Chem. A 106(35), 8029–8038 (2002)

    Article  CAS  Google Scholar 

  • Verdal, N., Kozlowski, P.M., Hudson, B.S.: Inelastic neutron scattering spectra of free base and zinc porphines: a comparison with DFT-based vibrational analysis. J. Phys. Chem. A 109(25), 5724–5733 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.-B., Lin, Z.: Supramolecular interactions between fullerenes and porphyrins. J. Am. Chem. Soc. 125(20), 6072–6073 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Meyerhoff, M.E.: High-performance liquid chromatography of C60, C70, and higher fullerenes on tetraphenylporphyrin–silica stationary phases using strong mobile phase solvents. J. Chromatogr. A 715(1), 19–29 (1995)

    Article  CAS  Google Scholar 

  • Zerner, M.C., Loew, G.H., Kirchner, R.F., Mueller-Westerhoff, U.T.: An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene. J. Am. Chem. Soc. 102(2), 589–599 (1980)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Jamehbozorgi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghahramanpour, M., Jamehbozorgi, S. & Rezvani, M. The effect of encapsulation of lithium atom on supramolecular triad complexes performance in solar cell by using theoretical approach. Adsorption 26, 471–489 (2020). https://doi.org/10.1007/s10450-019-00196-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00196-1

Keywords

  • Solar energy
  • Dsscs
  • Dye sensitizer
  • Triad
  • Global descriptors
  • Li@C60
  • DFT