The thermodynamic, quantum, AIM and NBO study of the interaction of pyrazinamide drug with the pristine and transition metal-doped B12P12

Abstract

In this work, the interaction of pyrazinamide (Pyr) drug with pristine, Sc, Ti, V and Cr-doped B12P12 nanocage is investigated by using density functional theory (DFT) at the cam-B3LYP/Lanl2DZ level of theory. From optimized structure, the adsorption energy, deformation energy, thermodynamic parameters, quantum parameters, reduced density gradient (RDG), natural bond orbital (NBO) and atom in molecule (AIM) parameters are calculated at the above level of theory. The calculated results demonstrate that with doping Ti atom the adsorption and deformation energy of Pyr/BP nanocage complex increase significantly from original values. The thermodynamic parameters revealed that adsorption of Pyr on the surface of doped models of B12P12 nanocage is more favorable than the pristine model. On the other hand, the ΔΔG(sol) values of water and ethanol solvent for adsorption of Pyr drug on the surface of pristine nanocage is negative and for Sc, Ti, V, and Cr doped B12P12 nanocage models are positive. The band gap of all adsorption models are in range 0.97–2.52 eV and the electrical and optical properties of system alter significantly from pristine models. The values of ▽2ρ and HBCP for all adsorption models are positive and negative respectively, it refers to medium strength or partially covalent bond and this result is an agreement with RDG and NBO outputs. The calculated results demonstrate that the Sc, Ti, V, and Cr doped B12P12 nanocages are a good candidate for deliver Pyr drug in the biological system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  2. Baei, M.T., Soltani, A.R., Torabi, P., Moradi, A.V.: Adsorption properties of SCN on (6,0), (7,0), (8,0), and Al-doped (6,0) zigzag single-walled carbon nanotubes: a density functional study. Monatschefte Für Chem. 142, 979–984 (2011)

    CAS  Google Scholar 

  3. Beheshtian, J., Ahmadi Peyghan, A., Bagheri, Z.: Quantum chemical study of fluorinated AlN nano-cage. Appl. Surf. Sci. 259, 631–636 (2012a)

    CAS  Google Scholar 

  4. Beheshtian, J., Bagheri, Z., Kamfiroozi, M., Ahmadi, A.: A comparative study on the B12 N12, Al12 N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18, 2653–2658 (2012b)

    PubMed  CAS  Google Scholar 

  5. Beheshtian, J., Kamfiroozi, M., Bagheri, Z., Ahmadi, A.: Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comput. Mater. Sci. 54, 115–118 (2012c)

    CAS  Google Scholar 

  6. Bulat, F.A., Toro-Labbé, A., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16(11), 1679–1691 (2010)

    PubMed  CAS  Google Scholar 

  7. Bulat, F.A., Burgess, J.S., Matis, B.R., Baldwin, J.W., Macaveiu, L., Murray, J.S., Politzer, P.: Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J. Phys. Chem. A 116(33), 8644–8652 (2012)

    PubMed  CAS  Google Scholar 

  8. Cossi, M., Barone, V.: Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 115, 4708–4717 (2001)

    CAS  Google Scholar 

  9. Costales, A., Kandalam, A.K., Franco, R., Pandey, R.: Theoretical study of structural and vibrational properties of (AlP)n, (AlAs)n,(GaP)n, (GaAs)n, (InP)n, and (InAs)n clusters with n = 1, 2, 3. J. Phys. Chem. B 106, 1940–1944 (2002)

    CAS  Google Scholar 

  10. de Assis, J.L., Grobas, P.V.P., Signoretti, A.M., Fernandes, M.A.C., Miranda, B.F., Silva, R.H.F., Valverde, M., Einicker-Lamas, P.A., Beule, D.: Lipoplexes for gene delivery characterized by fluorescence correlation spectroscopy. Biophys. J. 110, 489–490 (2016)

    Google Scholar 

  11. Frisch, M.J.: GAUSSIAN 09, Revision D.01. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  12. Glendening, E., Reed, A., Carpenter, J., Weinhold, F.: NBO Version 3.1. Gaussian Inc., Pittsburg, PA (2003)

    Google Scholar 

  13. Hsieh, S.C., Wang, S.M., Li, F.Y.: A theoretical investigation of the effect of adsorbed NO2 molecules on electronic transport in semiconducting single-walled carbon nanotubes. Carbon 49, 955–965 (2011)

    CAS  Google Scholar 

  14. Ichida, K., Hosoyamada, M., Hisatome, I., Enomoto, A., Hikita, M., Endou, H., Hosoya, T.: Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15(1), 164–173 (2004)

    PubMed  Google Scholar 

  15. Iqbal, M.J., Ayub, K.: Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages. J. Alloys Compd. 687, 976–983 (2016)

    Google Scholar 

  16. Iqbal, M.J., Ludwigd, R., Ayub, K.: Phosphides or nitrides for better NLO properties? A detailed comparative study of alkali metal doped nano-cages. Mater. Res. Bull. 92, 113–122 (2017)

    Google Scholar 

  17. Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-Garcia, J., Cohen, A.J., Yang, W.: Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Kandalam, A.K., Blanco, M.A., Pandey, R.: Theoretical study of AlnNn, GanNn, and InnNn (n = 4, 5, 6) clusters. J. Phys. Chem. B 106, 1945–1953 (2002a)

    CAS  Google Scholar 

  19. Kandalam, A.K., Blanco, M.A., Pandey, R.: Theoretical study of AlnNn, GanNn, and InnNn (n = 4, 5, 6) clusters. J. Phys. Chem. B 106, 1945–1953 (2002b)

    CAS  Google Scholar 

  20. Keresztury, G., Holly, S., Varga, J., Besenyei, G., Wang, A.V., Durig, J.R.: Vibrational spectra of monothiocarbamates-II IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N. Spectrochim. Chim. Acta. 49, 2007–2017 (1993)

    Google Scholar 

  21. Li, S.: Semiconductor physical electronics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  22. Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)

    PubMed  Google Scholar 

  23. Na, L.J., Rang, C.Z., Fang, Y.S.: Study on the prediction of visible absorption maxima of azobenzene compounds. J. Zhejiang. Univ. Sci. 6, 584–589 (2005)

    Google Scholar 

  24. Najafi, M.: The SH functionalized B24N24 and B24P24 nanocages as potential sensor for oxygen difluoride (OF2) detection in the gas phase and methanol. Vacuum 135, 18–21 (2017)

    CAS  Google Scholar 

  25. Padash, R., Rahimi-Nasrabadi, M., Rad, A.S., Sobhani-Nasab, A., Jesionowski, T., Ehrlich, H.: Comparative computational investigation of phosgene adsorption on (XY)12 (X = Al, B and Y = N, P) nanoclusters: DFT investigations. J. Clust Sci. 30, 203–218 (2019)

    CAS  Google Scholar 

  26. Palmer, S., Sokolovski, S.G., Rafailov, E., Nabi, G.: Technologic developments in the field of photonics for the detection of urinary bladder cancer. Clin. Genitourin. Cancer 11, 390–396 (2013)

    PubMed  Google Scholar 

  27. Qiang, Y., Antony, J., Sharma, A., Nutting, J., Sikes, D., Meyer, D.: Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanoparticle Res. 8, 489–496 (2006)

    CAS  Google Scholar 

  28. Rad, A.S.: Study on the surface interaction of Furan with X12Y12 (X = B, Al, and Y = N, P) semiconductors. Heteroat. chem. 27, 316–322 (2016)

    Google Scholar 

  29. Rad, A.S., Ayub, K.: Ni adsorption on Al12P12 nano-cage: a DFT study. J. Alloys Compd. 678, 317–324 (2016)

    CAS  Google Scholar 

  30. Rad, A.S., Shabestari, S.S., Mohseni, S., Aghouzi, S.A.: Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J. Solid State Chem. 237, 204–210 (2016)

    CAS  Google Scholar 

  31. Rad, A.S., Aghaei, S.M., Poralijan, V., Peyravi, M., Mirzae, M.: Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput. Theor. Chem. 1109, 1–9 (2017)

    CAS  Google Scholar 

  32. Rakhshi, M., Mohsennia, M., Rasa, H., Rezaei Sameti, M.: First-principle study of ammonia molecules adsorption on boron nitride nanotubes in presence and absence of static electric field and ion field. Vacuum 155, 456–464 (2018)

    CAS  Google Scholar 

  33. Rezaei-Sameti, M., Amirian, B.: A quantum, NBO, RDG study of interaction cadmium ion with the pristine, C, P and C&P doped (4, 4) armchair boron nitride nanotube (BNNTs). Asian J. Nanosci. Mater. 1(4), 262–270 (2018)

    Google Scholar 

  34. Rezaei-Sameti, M., Yaghoobi, S.: Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput. Condens. Matter. 3, 21–29 (2015)

    Google Scholar 

  35. Rezaei-Sameti, M., Zanganeh, F.: A computational study of adsorption H2S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs. J. Sulfur Chem. 38, 384–400 (2017)

    CAS  Google Scholar 

  36. Rezaei-Sameti, M., Zarei, P.: NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine. Al and Ga doped BNNTs: a DFT study. Adsorption 24(8), 757–767 (2018)

    CAS  Google Scholar 

  37. Rule, A.M.: American society of health-system pharmacists’ pain management network. J. Pain Palliat Care Pharmacother. 18(3), 59–62 (2004)

    PubMed  Google Scholar 

  38. Shokuhi Rad, A., Ayub, K.: A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys. Compd. 672, 161–169 (2016a)

    CAS  Google Scholar 

  39. Shokuhi Rad, A., Ayub, K.: Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131, 135–141 (2016b)

    CAS  Google Scholar 

  40. Soltani, A., Baei, M.T., Mirarab, M., Sheikhi, M., Lemeski, E.T.: The electronic and structural properties of BN and BP nano-cages interacting with OCN: A DFT study. J. Phys. Chem. Solids 75, 1099–1105 (2014)

    CAS  Google Scholar 

  41. Spaia, S., Magoula, I., Tsapas, G., Vayonas, G.: Effect of pyrazinamide and probenecid on peritoneal urate transport kinetics during continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 20(1), 47–52 (2000)

    PubMed  CAS  Google Scholar 

  42. Stuart, M.C., Kouimtzi, M., Hill, S.R.: WHO Model Formulary, 136, 140, 594 (2009)

  43. Sun, Y.T., Huang, P.Y., Lin, C.H., Lee, K.R., Lee, M.T.: Studying antibiotic-membrane interactions via X-Ray diffraction and fluorescence microscopy. Biophys. J. 110, 414–418 (2015)

    Google Scholar 

  44. Talla, J.A.: Ab initio simulations of doped single-walled carbon nanotube sensors. Chem. Phys. 392, 71–77 (2012)

    CAS  Google Scholar 

  45. Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.: Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160–183 (2015)

    CAS  Google Scholar 

  46. Wu, H., Fan, X., Kuo, J.L.: Metal free hydrogenation reaction on carbon doped boron nitride fullerene: a DFT study on the kinetic issue. Int. J. Hydrog. Energy 37, 14336–14342 (2012)

    CAS  Google Scholar 

  47. Yong, Y., Liu, K., Song, B., He, P., Wang, P., Li, H.: Coalescence of BnNn fullerenes: a new pathway to produce boron nitride nanotubes with small diameter. Phys. Lett. A 376, 1465–1467 (2012)

    CAS  Google Scholar 

Download references

Acknowledgment

The author thanks the Computational information center of Malayer University for providing the necessary facilities to carry out the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rezaei-Sameti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaei-Sameti, M., Shiravand, E. The thermodynamic, quantum, AIM and NBO study of the interaction of pyrazinamide drug with the pristine and transition metal-doped B12P12. Adsorption 26, 955–970 (2020). https://doi.org/10.1007/s10450-019-00181-8

Download citation

Keywords

  • B12P12
  • Metal doped
  • Pyrazinamide
  • DFT
  • RDG
  • AIM