Application of elevated temperature pressure swing adsorption in hydrogen production from syngas

Abstract

A clean and energy-efficient power system can be developed by the combination of hydrogen (as an energy carrier) and fuel cells (as power generation units); such system has the potential to compete with the current energy consumption pattern of direct combustion of fossil fuels. A novel CO/CO2 purification process, called the elevated-temperature pressure swing adsorption (ET-PSA), is coupled into an integrated gasification fuel cell (IGFC) power plant system in this work. A quantitative evaluation standard for the purification energy consumption is developed by considering both the net power efficiency loss of the IGFC after introducing the purification unit, and the total CO/CO2 removal rate. The sensible heat loss of syngas and the thermal regeneration of the saturated adsorbents are avoided; consequently, the calculated energy consumption of the ET-PSA (1.11 MJ/kg) process using the ideal purification unit as the base case is 36.2% lower than of the conventional solvent absorption method. Alternatively, high-temperature steam is consumed in the ET-PSA process during the rinse and purge steps, which leads to a decrease in the output power of the steam turbine. The purification energy consumption of the ET-PSA process can be further reduced either by increasing the hydrogen recovery ratio or by reducing the total steam consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

E :

Specific CO/CO2 removal rate (kg/kWhe)

HR :

Heat rate (kJ/kWhe)

G :

Mass flow rate (kg/s)

p :

Pressure (MPa)

T :

Temperature (°C)

η :

Net power efficiency (%)

CCS:

Carbon capture and storage

DOE:

Department of energy

ET-PSA:

Elevated temperature pressure swing adsorption

HP:

Hydrogen purity

HRR:

Hydrogen recovery ratio

HRSG:

Heat recovery steam generator

IGCC:

Integrated gasification combined cycle

IGFC:

Integrated gasification fuel cell

NT-PSA:

Normal temperature pressure swing adsorption

PEMFC:

Proton exchange membrane fuel cell

P/F ratio:

Purge-to-feed ratio

REF:

Reference case

R/F ratio:

Rinse-to-feed ratio

SOFC:

Solid oxide fuel cell

SPECCA:

Specific primary energy consumption for carbon avoided

WGS:

Water gas shift

References

  1. Agency, I.E.: Redrawing the energy-climate map: world energy outlook special report. OECD/IEA (2013)

  2. Alptekin, G.: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture. TDA Research, Incorporated, Wheat Ridge (2012)

    Book  Google Scholar 

  3. Ameri, M., Mohammadi, R.: Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software. Int. J. Energy Res. 37(5), 412–425 (2013). https://doi.org/10.1002/er.1941

    Article  Google Scholar 

  4. Black, J.: Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity. National Energy Technology Laboratory, Washington, DC (2010)

    Google Scholar 

  5. Boon, J., Coenen, K., van Dijk, E., Cobden, P., Gallucci, F., van Sint Annaland, M.: Chapter one-sorption-enhanced water–gas shift. In: Lemonidou, A.A. (ed.) Advances in Chemical Engineering, vol. 51, pp. 1–96. Academic Press, Washington, DC (2017)

    Google Scholar 

  6. Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A., Hackett, L.A., Hallett, J.P., Herzog, H.J., Jackson, G., Kemper, J., Krevor, S., Maitland, G.C., Matuszewski, M., Metcalfe, I.S., Petit, C., Puxty, G., Reimer, J., Reiner, D.M., Rubin, E.S., Scott, S.A., Shah, N., Smit, B., Trusler, J.P.M., Webley, P., Wilcox, J., Mac Dowell, N.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11(5), 1062–1176 (2018). https://doi.org/10.1039/c7ee02342a

    CAS  Article  Google Scholar 

  7. Coenen, K., Gallucci, F., Hensen, E., van Sint Annaland, M.: Adsorption behavior and kinetics of H2S on a potassium-promoted hydrotalcite. Int. J. Hydrog. Energy 43(45), 20758–20771 (2018)

    CAS  Article  Google Scholar 

  8. Couling, D.J., Prakash, K., Green, W.H.: Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined-cycle power with CO2 capture and sequestration. Ind. Eng. Chem. Res. 50(19), 11313–11336 (2011). https://doi.org/10.1021/ie200291j

    CAS  Article  Google Scholar 

  9. Denton, D.L.: An update on RTI’s warm syngas cleanup demonstration project. In: Gasification Technologies Conference, Washington, DC (2014)

  10. Field, R.P., Brasington, R.: Baseline flowsheet model for IGCC with carbon capture. Ind. Eng. Chem. Res. 50(19), 11306–11312 (2011). https://doi.org/10.1021/ie200288u

    CAS  Article  Google Scholar 

  11. Gazzani, M., Macchi, E., Manzolini, G.: CAESAR: SEWGS integration into an IGCC plant. Energy Procedia 4, 1096–1103 (2011). https://doi.org/10.1016/j.egypro.2011.01.160

    Article  Google Scholar 

  12. Gazzani, M., Macchi, E., Manzolini, G.: CO2 capture in integrated gasification combined cycle with SEWGS-part A: thermodynamic performances. Fuel 105, 206–219 (2013). https://doi.org/10.1016/j.fuel.2012.07.048

    CAS  Article  Google Scholar 

  13. Harrison, D.P.: Sorption-enhanced hydrogen production: a review. Ind. Eng. Chem. Res. 47(17), 6486–6501 (2008). https://doi.org/10.1021/ie800298z

    CAS  Article  Google Scholar 

  14. Bhatta, K.G.L., Subramanyam, S., Chengala, M.D., Olivera, S., Venkatesh, K.: Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. J. Clean. Prod. 103, 171–196 (2015)

    CAS  Article  Google Scholar 

  15. Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption 20(2–3), 511–524 (2014). https://doi.org/10.1007/s10450-013-9598-0

    CAS  Article  Google Scholar 

  16. Mantripragada, H.C., Zhai, H., Rubin, E.S.: Boundary Dam or Petra Nova—Which is a better model for CCS energy supply? Int. J. Greenh. Gas Control 82, 59–68 (2019). https://doi.org/10.1016/j.ijggc.2019.01.004

    Article  Google Scholar 

  17. Newell, R., Anderson, S.: Prospects for carbon capture and storage technologies. Annu. Rev. Environ. Resour. 29, 109–142 (2004)

    Article  Google Scholar 

  18. Ribeiro, A.M., Santos, J.C., Rodrigues, A.E., Rifflart, S.: Pressure swing adsorption process in coal to Fischer–Tropsch fuels with CO2 capture. Energy Fuel 26(2), 1246–1253 (2012a). https://doi.org/10.1021/ef201650r

    CAS  Article  Google Scholar 

  19. Ribeiro, A.M., Santos, J.C., Rodrigues, A.E., Rifflart, S.: Syngas stoichiometric adjustment for methanol production and co-capture of carbon dioxide by pressure swing adsorption. Sep. Sci. Technol. 47(6), 850–866 (2012b). https://doi.org/10.1080/01496395.2011.637282

    CAS  Article  Google Scholar 

  20. Riboldi, L., Bolland, O.: Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials. Energy Procedia 114, 2390–2400 (2017). https://doi.org/10.1016/j.egypro.2017.03.1385

    CAS  Article  Google Scholar 

  21. Shelton, W.: Analysis of integrated gasification fuel cell plant configurations. In: DOE/NETL-2011-1482 (2011)

  22. Valenti, G., Bonalumi, D., Macchi, E.: A parametric investigation of the Chilled Ammonia Process from energy and economic perspectives. Fuel 101, 74–83 (2012). https://doi.org/10.1016/j.fuel.2011.06.035

    CAS  Article  Google Scholar 

  23. van Dijk, H.A.J., Cobden, P.D., Lundqvist, M., Cormos, C.C., Watson, M.J., Manzolini, G., van der Veer, S., Mancuso, L., Johns, J., Sundelin, B.: Cost effective CO2 reduction in the iron & steel industry by means of the SEWGS technology: sTEPWISE project. Energy Procedia 114, 6256–6265 (2017). https://doi.org/10.1016/j.egypro.2017.03.1764

    CAS  Article  Google Scholar 

  24. van Vuuren, D., Kriegler, E., Riahi, K., Tavoni, M., Koelbl, B., van Sluisveld, M.: The use of carbon capture and storage in mitigation scenarios: an integrated assessment modelling perspective. Our Common Future Under Climate Change. In: International Scientific Conference, Paris (2015)

  25. Veras, T.D., Mozer, T.S., dos Santos, D., Cesar, A.D.: Hydrogen: trends, production and characterization of the main process worldwide. Int. J. Hydrog. Energy 42(4), 2018–2033 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.219

    CAS  Article  Google Scholar 

  26. Voldsund, M., Jordal, K., Anantharaman, R.: Hydrogen production with CO2 capture. Int. J. Hydrog. Energy 41(9), 4969–4992 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.009

    CAS  Article  Google Scholar 

  27. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., Zhong, Z.: Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7(11), 3478–3518 (2014). https://doi.org/10.1039/c4ee01647e

    CAS  Article  Google Scholar 

  28. Wang, Q., Luo, J., Zhong, Z., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4(1), 42–55 (2011a). https://doi.org/10.1039/c0ee00064g

    CAS  Article  Google Scholar 

  29. Wang, S., Yan, S., Ma, X., Gong, J.: Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ. Sci. 4(10), 3805–3819 (2011b). https://doi.org/10.1039/c1ee01116b

    CAS  Article  Google Scholar 

  30. Welaya, Y.M.A., Mosleh, M., Ammar, N.R.: Thermodynamic analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications. Brodogradnja 65(1), 97–116 (2014)

    Google Scholar 

  31. Woods, M.C., Capicotto, P., Haslbeck, J.L., Kuehn, N.J., Matuszewski, M., Pinkerton, L.L., Rutkowski, M.D., Schoff, R.L., Vaysman, V.: Cost and performance baseline for fossil energy plants. Volume 1: bituminous coal and natural gas to electricity final report. In: National Energy Technology Laboratory (2007)

  32. Wu, Y.-J., Li, P., Yu, J.-G., Cunha, A.F., Rodrigues, A.E.: Progress on sorption-enhanced reaction process for hydrogen production. Rev. Chem. Eng. 32(3), 271–303 (2016). https://doi.org/10.1515/revce-2015-0043

    CAS  Article  Google Scholar 

  33. Yang, Z.-Z., Wei, J.-J., Zeng, G.-M., Zhang, H.-Q., Tan, X.-F., Ma, C., Li, X.-C., Li, Z.-H., Zhang, C.: A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2. Coordin. Chem. Rev. 386, 154–182 (2019)

    CAS  Article  Google Scholar 

  34. Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide at high temperature: a review. Sep. Purif. Technol. 26(2–3), 195–205 (2002). https://doi.org/10.1016/s1383-5866(01)00165-4

    CAS  Article  Google Scholar 

  35. Zhu, X., Li, S., Shi, Y., Cai, N.: Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog. Energy Combust. 75, 100784 (2019). https://doi.org/10.1016/j.pecs.2019.100784

    Article  Google Scholar 

  36. Zhu, X., Shi, Y., Cai, N.: Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energy 176, 196–208 (2016). https://doi.org/10.1016/j.apenergy.2016.05.068

    CAS  Article  Google Scholar 

  37. Zhu, X., Shi, Y., Cai, N.: CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas. J. Energy Chem. 26(5), 956–964 (2017). https://doi.org/10.1016/j.jechem.2017.06.006

    Article  Google Scholar 

  38. Zhu, X., Shi, Y., Cai, N., Li, S., Yang, Y.: Techno-economic evaluation of an elevated temperature pressure swing adsorption process in a 540 MW IGCC power plant with CO2 capture. Energy Procedia 63, 2016–2022 (2014)

    CAS  Article  Google Scholar 

  39. Zhu, X., Shi, Y., Li, S., Cai, N.: Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas. Int. J. Hydrog. Energy 43(29), 13305–13317 (2018a). https://doi.org/10.1016/j.ijhydene.2018.05.030

    CAS  Article  Google Scholar 

  40. Zhu, X., Shi, Y., Li, S., Cai, N.: Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production. Appl. Energy 229, 1061–1071 (2018b). https://doi.org/10.1016/j.apenergy.2018.08.093

    CAS  Article  Google Scholar 

  41. Zhu, X., Shi, Y., Li, S., Cai, N., Anthony, E.J.: System and processes of pre-combustion carbon dioxide capture and separation. In: Pre-combustion Carbon Dioxide Capture Materials. pp. 281–334. The Royal Society of Chemistry, London (2018c)

Download references

Acknowledgement

This research was financed by the National Key Research Development Program of China (2018YFC0810001), the National Natural Science Foundation of China (51806120), the National Postdoctoral Program for Innovative Talent (BX20190198), the National Science Foundation for Post-doctoral Scientists of China (2017M610890), and the Seed Fund of Shanxi Research Institute for Clean Energy, Tsinghua University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Hao, P., Shi, Y. et al. Application of elevated temperature pressure swing adsorption in hydrogen production from syngas. Adsorption 26, 1227–1237 (2020). https://doi.org/10.1007/s10450-019-00175-6

Download citation

Keywords

  • Elevated-temperature pressure swing adsorption
  • Hydrogen production
  • Energy consumption
  • Process optimization
  • Integrated gasification fuel cell