Abstract
As one of the most promising candidates for adsorptive removal of CO2, amine-based solid adsorbents have been widely investigated by many researchers around the world in the past few years. This class of materials offers great potential for replacing the current energy intensive amine scrubbing technology and address the scalability of adsorption-based capture processes. In this review, we discuss the recent advances in development and evaluation of various types of amine functionalized materials, aiming at providing a comprehensive overview of the current progress and the future directions with respect to both materials development and process application. While there have been recent broad reviews on CO2 capture processes and in particular adsorbent materials for CO2 capture, here we will narrow down our focus on only amine-based materials due to their significant promises in efficiently capture CO2 from various gaseous streams and examine the current state-of-the-art research on these fascinating class of materials.
This is a preview of subscription content, access via your institution.



Reprinted with permission from Pera-Titus (2013). Copyright 2014. American Chemical Society

Reprinted with permission from Gebald et al. (2014). Copyright 2014. American Chemical Society

Reprinted with permission from Bollini et al. (2012b). Copyright 2012. American Chemical Society

Reprinted with permission from Bollini et al. (2012). Copyright 2012. American Chemical Society

Reprinted from Zhao et al. (2013). Copyright 2013. American Chemical Society

Reprinted from Wang et al. (2015). Copyright 2014 Elsevier B.V

Reprinted from Haque et al. (2014). Copyright 2014. Royal Society of Chemistry

Reprinted (adapted) with permission from Darunte et al. (2016). Copyright 2016. American Chemical Society

Reprinted (adapted) with permission from Bhattacharjee et al. (2014). Copyright 2014. Royal Society of Chemistry

Reproduced with the permission from Liao et al. (2016). Copyright 2014. Published by the Royal Society of Chemistry

Reproduced with the permission from Yoon et al. (2018). Copyright 2014. Copyright 2018. American Chemical Society

Reproduced with the permission from Wang et al. (2018). Copyright 2017. Elsevier B.V.

Reproduced with the permission from Gholidoust et al. (2017). Copyright 2017. American Chemical Society

Reproduced with the permission from Su et al. (2009). Copyright 2008 Elsevier B.V.

Reproduced with the permission from Guillerm et al. (2014). Copyright 2014. Royal Society of Chemistry

Reproduced with the permission from Fan et al. (2015). Copyright 2015 Elsevier Ltd

Reproduced with the permission from Chen et al. 2009). Copyright 2009. Royal Society of Chemistry

Reproduced with the permission from Thakkar et al. (2017). Copyright 2017. American Chemical Society

Reproduced with the permission from Kim et al. (2016). Copyright 2016. Royal Society of Chemistry

Reproduced with the permission from Zhang et al. (2014). Copyright 2014. Elsevier
References
Aarti, S., Bhadauria, A., Nanoti, S., Dasgupta, S., Divekar, P., Gupta, R.: Chauhan, [Cu3(BTC)2]-polyethyleneimine: an efficient MOF composite for effective CO2 separation. RSC Adv. 6, 93003–93009 (2016). https://doi.org/10.1039/c6ra10465g
Abid, H.R., Shang, J., Ang, H., Wang, S.: Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4. Int. J. Smart Nano Mater. 4, 72 (2013). https://doi.org/10.1080/19475411.2012.688773
Adsorbents, M.O.F., Sinha, A., Darunte, L.A., Jones, C.W., Real, M.J., Kawajiri, Y.: Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101 (Cr) and mmen-Mg2(dobpdc) MOF adsorbents. Ind. Eng. Chem. Res. 101, 750 (2017). https://doi.org/10.1021/acs.iecr.6b03887
Ahmed, S., Ramli, A., Yusup, S.: Effect of TEPA loading on the physicochemical properties of Si-MCM-41 by impregnation method. AIP Conf. Proc. 1482, 599–604 (2012). https://doi.org/10.1063/1.4757542
Ahmed, S., Ramli, A., Yusup, S.: Development of polyethylenimine-functionalized mesoporous Si-MCM-41 for CO2 adsorption. Fuel Process. Technol. 167, 622–630 (2017). https://doi.org/10.1016/j.fuproc.2017.07.036
Anbia, M.: Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification. J. Nat. Gas Chem. 21, 339–343 (2012). https://doi.org/10.1016/S1003-9953(11)60374-5
Arstad, B., Fjellvåg, H., Kongshaug, K.O., Swang, O., Blom, R.: Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14, 755–762 (2008). https://doi.org/10.1007/s10450-008-9137-6
Auta, M., Hameed, B.H.: Adsorption of carbon dioxide by diethanolamine activated alumina beads in a fixed bed. Chem. Eng. J. 253, 350–355 (2014). https://doi.org/10.1016/j.cej.2014.05.018
Bagshaw, S.A., Pinnavaia, T.J.: Mesoporous alumina molecular sieves. Angew. Chemie (International Ed. English) (1996). https://doi.org/10.1002/anie.199611021
Bandyopadhyay, S., Pallavi, P., Anil, A.G., Patra, A.: Fabrication of porous organic polymers in the form of powder, soluble in organic solvents and nanoparticles: a unique platform for gas adsorption and efficient chemosensing. Polym. Chem. 6, 3775–3780 (2015). https://doi.org/10.1039/c5py00235d
Belmabkhout, Y.: Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind. Eng. Chem. Res. 49, 359–365 (2009). https://doi.org/10.1021/ie900837t
Belmabkhout, Y., De Weireld, G., Sayari, A.: Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25, 13275–13278 (2009a). https://doi.org/10.1021/la903238y
Belmabkhout, Y., Serna-Guerrero, R., Sayari, A.: Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure 1: pure CO2 adsorption. Chem. Eng. Sci. 64, 3721–3728 (2009b). https://doi.org/10.1016/j.ces.2009.03.017
Belmabkhout, Y., Serna-Guerrero, R., Sayari, A.: Amine-bearing mesoporous silica for CO2 removal from dry and humid air. Chem. Eng. Sci. 65, 3695–3698 (2010). https://doi.org/10.1016/j.ces.2010.02.044
Ben, T., Qiu, S.: Porous aromatic frameworks: synthesis, structure and functions. CrystEngComm 15, 17–26 (2013). https://doi.org/10.1039/c2ce25409c
Ben, T., Ren, H., Shengqian, M., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S., Zhu, G.: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009). https://doi.org/10.1002/anie.200904637
Bezerra, D.P., Oliveira, R.S., Vieira, R.S., Cavalcante, C.L., Azevedo, D.C.S.: Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption 17, 235–246 (2011a). https://doi.org/10.1007/s10450-011-9320-z
Bezerra, D.P., Oliveira, R.S., Vieira, R.S., Cavalcante, C.L., Azevedo, D.C.S.: Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption 17, 235–246 (2011b). https://doi.org/10.1007/s10450-011-9320-z
Bezerra, D.P., Francisco, W.M., De Moura, P.A.S., Sousa, A.G.S., Vieira, R.S., Rodriguez-castellon, E., Azevedo, D.C.S.: CO2 adsorption in amine-grafted zeolite 13X. Appl. Surf. Sci. 314, 314–321 (2014). https://doi.org/10.1016/j.apsusc.2014.06.164
Bhattacharjee, S., Chen, C., Ahn, W.S.: Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4(94), 52500–52525 (2014)
Bollini, P., Brunelli, N.A., Didas, S.A., Jones, C.W.: Dynamics of CO2 adsorption on amine adsorbents. 1. Impact of heat effects. Ind. Eng. Chem. Res. 51, 15145 (2012a). https://doi.org/10.1021/ie301790a
Bollini, P., Brunelli, N.A., Didas, S.A., Jones, C.W.: Dynamics of CO2 adsorption on amine adsorbents. 2. Insights into adsorbent design. Ind. Eng. Chem. Res. 51, 15153–15162 (2012b). https://doi.org/10.1021/ie3017913
Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050 (2003). https://doi.org/10.1021/la026525h
Brandani, F., Rouse, A., Brandani, S., Ruthven, D.M.: Adsorption kinetics and dynamic behavior of a carbon monolith. Adsorption. 10, 99–109 (2004). https://doi.org/10.1023/B:ADSO.0000039866.37214.6a
Brennan, P.J., Thakkar, H., Li, X., Rownaghi, A.A., Koros, W.J., Rezaei, F.: Effect of post-functionalization conditions on the carbon dioxide adsorption properties of aminosilane-grafted zirconia/titania/silica-poly(amide-imide) composite hollow fiber sorbents. Energy Technol. 5, 327–337 (2017). https://doi.org/10.1002/ente.201600328
Builes, S., Sandler, S.I., Xiong, R.: Isosteric heats of gas and liquid adsorption. Langmuir 29, 10416–10422 (2013)
Canadell, J.G., Le Quere, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104, 18866–18870 (2007). https://doi.org/10.1073/pnas.0702737104
Cao, Y., Song, F., Zhao, Y., Zhong, Q.: Capture of carbon dioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc). J. Environ. Sci. (China) 25, 2081–2087 (2013). https://doi.org/10.1016/S1001-0742(12)60267-8
Castellazzi, P., Notaro, M., Busca, G., Finocchio, E.: CO2 capture by functionalized alumina sorbents: diEthanolAmine on γ-alumina. Microporous Mesoporous Mater. 226, 444–453 (2016). https://doi.org/10.1016/j.micromeso.2016.02.027
Celedonio, J.M., Pacia, R.M., Ko, Y.S.: Spectroscopic study on multicyclic and long-time stability of CO2 adsorbent in flue gas conditions. Catal. Today 303, 55–63 (2018). https://doi.org/10.1016/j.cattod.2017.11.022
Chaffee, A.L., Knowles, G.P., Liang, Z., Zhang, J., Xiao, P., Webley, P.A.: CO2 capture by adsorption: materials and process development. Int. J. Greenhouse Gas Control 1, 11–18 (2007). https://doi.org/10.1016/S1750-5836(07)00031-X
Chaikittisilp, W., Kim, H., Jones, C.W.: Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 25, 5528–5537 (2011). https://doi.org/10.1021/ef201224v
Chang, A.C.C., Chuang, S.S.C., Gray, M., Soong, Y.: In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl)triethoxysilane. Energy Fuels 5, 4 (2003). https://doi.org/10.1021/ef020176h
Chang, F.Y., Chao, K.J., Cheng, H.H., Tan, C.S.: Adsorption of CO2 onto amine-grafted mesoporous silicas. Sep. Purif. Technol. 70, 87–95 (2009). https://doi.org/10.1016/j.seppur.2009.08.016
Chao, K.J., Klinthong, W., Tan, C.S.: CO2 adsorption ability and thermal stability of amines supported on mesoporous silica SBA-15 and fumed silica. J. Chin. Chem. Soc. 60, 735–744 (2013). https://doi.org/10.1002/jccs.201200507
Chatti, R., Bansiwal, A.K., Thote, J.A., Kumar, V., Jadhav, P., Lokhande, S.K., Biniwale, R.B., Labhsetwar, N.K., Rayalu, S.S.: Amine loaded zeolites for carbon dioxide capture: amine loading and adsorption studies. Microporous Mesoporous Mater. 121, 84–89 (2009). https://doi.org/10.1016/j.micromeso.2009.01.007
Chem, J.M., Bollini, P., Didas, S.A., Jones, C.W.: Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 21, 15100–15120 (2011). https://doi.org/10.1039/c1jm12522b
Chen, C., Ahn, W.S.: CO2 capture using mesoporous alumina prepared by a sol-gel process. Chem. Eng. J. 166, 646–651 (2011). https://doi.org/10.1016/j.cej.2010.11.038
Chen, C., Yang, S., Ahn, W., Ryoo, R.: Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 24, 10–12 (2009). https://doi.org/10.1039/b905589d
Chen, C., Son, W.J., You, K.S., Ahn, J.W., Ahn, W.S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161, 46–52 (2010). https://doi.org/10.1016/j.cej.2010.04.019
Chen, C., Kim, J., Park, D.W., Ahn, W.S.: Ethylenediamine grafting on a zeolite-like metal organic framework (ZMOF) for CO2 capture. Mater. Lett. 106, 344–347 (2013). https://doi.org/10.1016/j.matlet.2013.05.078
Chen, C., Kim, J., Ahn, W.S.: CO2 Capture by amine-functionalized nanoporous materials: a review. Korean J. Chem. Eng. 31, 1919–1934 (2014). https://doi.org/10.1007/s11814-014-0257-2
Chen, C., Kim, S.S., Cho, W.S., Ahn, W.S.: Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture. Appl. Surf. Sci. 332, 167–171 (2015). https://doi.org/10.1016/j.apsusc.2015.01.106
Cherubini, F., Peters, G.P., Berntsen, T., Strømman, A.H., Hertwich, E.: CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3, 413–426 (2011). https://doi.org/10.1111/j.1757-1707.2011.01102.x
Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2, 796 (2009). https://doi.org/10.1002/cssc.200900036
Choi, S., Gray, M.L., Jones, C.W.: Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2capture from ambient air. Chemsuschem 4, 628–635 (2011a). https://doi.org/10.1002/cssc.201000355
Choi, S., Drese, J., Eisenberger, P., Jones, C.: Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. J. Neurophysiol. (2011b). https://doi.org/10.1021/es102797w
Choi, S., Watanabe, T., Bae, T.H., Sholl, D.S., Jones, C.W.: Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J. Phys. Chem. Lett. 3, 1136–1141 (2012). https://doi.org/10.1021/jz300328j
Cohen, S.M.: Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 112, 970–1000 (2012). https://doi.org/10.1021/cr200179u
Cooper, A.I.: Conjugated microporous polymers. Adv. Mater. 21, 1291–1295 (2009). https://doi.org/10.1002/adma.200801971
Couck, S., Lefevere, J., Mullens, S., Protasova, L., Meynen, V., Desmet, G., Baron, G.V., Denayer, J.F.M.: CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith. Chem. Eng. J. 308, 719–726 (2017). https://doi.org/10.1016/j.cej.2016.09.046
Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000). https://doi.org/10.1038/35041539
Crespo, D., Yang, R.T.: Adsorption of organic vapors on single-walled carbon nanotubes. Ind. Eng. Chem. Res. 45, 5524 (2006). https://doi.org/10.1021/ie051106b
D’Alessandro, D.M., Smit, B., Long, J.R.: Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010). https://doi.org/10.1002/anie.201000431
Da Silva, F.A., Rodrigues, A.E.: Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets. Ind. Eng. Chem. Res. 38, 2051–2057 (1999). https://doi.org/10.1021/ie980640z
Danon, A., Stair, P.C., Weitz, E.: FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species. J. Phys. Chem. C 115, 11540–11549 (2011). https://doi.org/10.1021/jp200914v
Darunte, L.A., Walton, K.S., Sholl, D.S., Jones, C.W.: CO2 capture via adsorption in amine-functionalized sorbents. Curr. Opin. Chem. Eng. 12, 82–90 (2016a). https://doi.org/10.1016/j.coche.2016.03.002
Darunte, L.A., Walton, K.S., Sholl, D.S., Jones, C.W.: Direct air capture of CO2 using amine functionalized MIL-101(Cr). ACS Sustain. Chem. Eng. 4, 5761–5768 (2016b). https://doi.org/10.1021/acssuschemeng.6b01692
Darunte, L.A., Terada, Y., Murdock, C.R., Walton, K.S., Sholl, D.S., Jones, C.W.: Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture. ACS Appl. Mater. Interfaces. 9, 17042–17050 (2017a). https://doi.org/10.1021/acsami.7b02035
Das, D., Samal, D.P., Meikap, B.C.: Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon. Toxic/Hazard. Subst. Environ. Eng. 4529, 1532–4117 (2016). https://doi.org/10.1080/10934529.2016.1170462
Dawson, R., Cooper, A.I., Adams, D.J.: Nanoporous organic polymer networks. Prog. Polym. Sci. 37, 530–563 (2012). https://doi.org/10.1016/j.progpolymsci.2011.09.002
Demessence, A., Alessandro, D.M.D., Foo, M.L., Long, J.R.: Strong CO2 binding in a water-stable, triazolate-bridged metal - organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009)
Didas, S.A., Choi, S., Chaikittisilp, W., Jones, C.W.: Amine-oxide hybrid materials for CO2 capture from ambient air. Acc. Chem. Res. 48, 2680–2687 (2015). https://doi.org/10.1021/acs.accounts.5b00284
Dillon, E.P., Crouse, C.A., Barron, A.R.: Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine- functionalized single-wall carbon nanotubes. ACS Nano 2, 156–164 (2008). https://doi.org/10.1021/nn7002713
Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998a). https://doi.org/10.1142/p111
Drage, T.C., Arenillas, A., Smith, K.M., Snape, C.E.: Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512 (2008). https://doi.org/10.1016/j.micromeso.2008.05.009
Drage, T.C., Smith, K.M., Pevida, C., Arenillas, A., Snape, C.E.: energy procedia development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia 1, 881–884 (2009). https://doi.org/10.1016/j.egypro.2009.01.117
Drese, J.H., Choi, S., Lively, R.P., Koros, W.J., Fauth, D.J., Gray, M.L., Jones, C.W.: Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Adv. Funct. Mater. 19, 3821–3832 (2009). https://doi.org/10.1002/adfm.200901461
Ebner, A.D., Gray, M.L., Chisholm, N.G., Black, Q.T., Mumford, D.D., Nicholson, M.A., Ritter, J.A.: Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption. Ind. Eng. Chem. Res. 50, 5634–5641 (2011). https://doi.org/10.1021/ie2000709
Fan, Y., Rezaei, F., Labreche, Y., Lively, R.P., Koros, W.J., Jones, C.W.: Stability of amine-based hollow fiber CO2 adsorbents in the presence of NO and SO2. Fuel 160, 153–164 (2015). https://doi.org/10.1016/j.fuel.2015.07.072
Fayaz, M., Sayari, A.: Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica. ACS Appl. Mater. Interfaces 9, 43747–43754 (2017). https://doi.org/10.1021/acsami.7b15463
Flaig, R.W., Popp, T.M.O., Fracaroli, A.M., Kapustin, E.A., Kalmutzki, M.J., Altamimi, R.M., Fathieh, F., Reimer, A., Yaghi, O.M.: The chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditions. J. Am. Chem. Soc. 35, 1–4 (2017). https://doi.org/10.1021/jacs.7b06382
Forse, A.C., Milner, P.J., Lee, J.H., Redfearn, H.N., Oktawiec, J., Siegelman, R.L., Martell, J.D., Dinakar, B., Porter-Zasada, L.B., Gonzalez, M.I., Neaton, J.B., Long, J.R., Reimer, J.A.: Elucidating CO2 chemisorption in diamine-appended metal-organic frameworks. J. Am. Chem. Soc. 140, 18016–18031 (2018). https://doi.org/10.1021/jacs.8b10203
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X.: An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 125, 3364–3367 (2012). https://doi.org/10.1002/anie.201108357
Garibay, S.J., Weston, M.H., Mondloch, J.E., Colón, Y.J., Farha, O.K., Hupp, J.T., Nguyen, S.T.: Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach. CrystEngComm 15, 1515–1519 (2013). https://doi.org/10.1039/c2ce26595h
Gebald, C., Wurzbacher, J.A., Borgschulte, A., Zimmermann, T., Steinfeld, A.: Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ Sci Technol. 48(4), 2497–2504 (2014)
Gérardin, C., Reboul, J., Bonne, M., Lebeau, B.: Ecodesign of ordered mesoporous silica materials. Chem. Soc. Rev. 42, 4217 (2013). https://doi.org/10.1039/c3cs35451b
Gholidoust, A., Atkinson, J.D., Hashisho, Z.: Enhancing Co2adsorption via amine-impregnated activated carbon from oil sands coke. Energy Fuels 31, 1756–1763 (2017). https://doi.org/10.1021/acs.energyfuels.6b02800
Gil, M., Tiscornia, I., de la Iglesia, Ó., Mallada, R., Santamaría, J.: Monoamine-grafted MCM-48: an efficient material for CO2 removal at low partial pressures. Chem. Eng. J. 175, 291–297 (2011). https://doi.org/10.1016/j.cej.2011.09.107
Gockowski, J., Sonwa, D.: Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environ. Manage. 48, 307–321 (2011). https://doi.org/10.1007/s00267-010-9602-3
Goeppert, A., Czaun, M., May, R.B., Prakash, G.K.S., Olah, G.A., Narayanan, S.R.: Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J. Am. Chem. Soc. 133, 20164–20167 (2011). https://doi.org/10.1021/ja2100005
Gregg, S.J., Ramsay, D.F.: A study of the adsorption of carbon dioxide by alumina using infrared and isotherm measurements. J. Phys. Chem. 73, 1243–1247 (1969)
Guillerm, V., Weseliński, U.J., Alkordi, M., Mohideen, M.I.H., Belmabkhout, Y., Cairns, A.J., Eddaoudi, M.: Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. Chem. Commun. 50, 1937–1940 (2014). https://doi.org/10.1039/c3cc48228f
Guo, B., Chang, L., Kechang, X.: Adsorption of carbon dioxide on activated carbon. J. Nat. Gas Chem. 15, 223–229 (2006). https://doi.org/10.1039/c5md00502g
Gupta, V.K., Saleh, T.A.: Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ. Sci. Pollut. Res. (2013). https://doi.org/10.1007/s11356-013-1524-1
Hallenbeck, A.P., Kitchin, J.R.: Effects of O2 and SO2 on the capture capacity of a primary-amine based polymeric CO2 sorbent. Ind. Eng. Chem. Res. 52, 10788 (2013). https://doi.org/10.1021/ie400582a
Hao, G.P., Li, W.C., Qian, D., Wang, G.H., Zhang, W.P., Zhang, T., Wang, A.Q., Schüth, F., Bongard, H.J., Lu, A.H.: Structurally designed synthesis of mechanically stable poly(benzoxazine-co- resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 133, 11378–11388 (2011). https://doi.org/10.1021/ja203857g
Haque, E., Lo, V., Minett, A.I., Harris, A.T., Church, T.L.: Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). J. Mater. Chem. 101, 193–203 (2014). https://doi.org/10.1039/c3ta13589f
Hefti, M., Joss, L., Bjelobrk, Z., Mazzotti, M.: On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption. Faraday Discuss. 192, 153–179 (2016). https://doi.org/10.1039/C6FD00040A
Heydari-Gorji, A., Sayari, A.: CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: experimental and kinetic modeling. Chem. Eng. J. 173, 72–79 (2011). https://doi.org/10.1016/j.cej.2011.07.038
Heydari-gorji, A., Yang, Y., Sayari, A.: Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy Fuels 25, 4206–4210 (2011). https://doi.org/10.1021/ef200765f
Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G., Jones, C.W.: Designing adsorbents for CO2 capture from flue gas-Hyperbranched aminosilicas capable of capturing CO2 reversibly. J. Am. Chem. Soc. 130, 2902–2903 (2008). https://doi.org/10.1021/JA077795V
Horstmeier, J.F., Lopez, A.G., Agar, D.W.: Performance improvement of vacuum swing adsorption processes for CO2 removal with integrated phase change material. Int. J. Greenhouse Gas Control 47, 364–375 (2016). https://doi.org/10.1016/j.ijggc.2016.02.013
Houshmand, A.: Carbon dioxide capture with amine-grafted activated carbon. Water Air Soil Pollut. 223, 827–835 (2012). https://doi.org/10.1007/s11270-011-0905-7
Hsu, S.C., Lu, C., Su, F., Zeng, W., Chen, W.: Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chem. Eng. Sci. 65, 1354 (2010). https://doi.org/10.1016/j.ces.2009.10.005
Huang, H.Y., Yang, R.T., Chinn, D., Munson, C.L.: Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 42, 2427 (2003). https://doi.org/10.1021/ie020440u
Huang, X., Lu, J., Wang, W., Wei, X., Ding, J.: Experimental and computational investigation of CO2 capture on amine grafted metal-organic framework NH2-MIL-101. Appl. Surf. Sci. 371, 307–313 (2016). https://doi.org/10.1016/j.apsusc.2016.02.154
Hwang, Y.K., Hong, D.Y., Chang, J.S., Jhung, S.H., Seo, Y.K., Kim, J., Vimont, A., Daturi, M., Serre, C., Férey, G.: Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008). https://doi.org/10.1002/anie.200705998
Ii, J.C.F., Tanthana, J., Chuang, S.S.C.: Oxide-supported tetraethylenepentamine for CO2 capture. Environ. Prog. Sustain. Energy 28, 589–598 (2009)
Irani, M., Jacobson, A.T., Gasem, K.A.M., Fan, M.: Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel 206, 10–18 (2017). https://doi.org/10.1016/j.fuel.2017.05.087
Jacobs, W.: Carbon capture and sequestration. Ssrn 325, 1652–1655 (2014). https://doi.org/10.2139/ssrn.2379600
Jadhav, P.D., Chatti, R.V., Biniwale, R.B., Labhsetwar, N.K., Devotta, S., Rayalu, S.S.: Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21, 3555–3559 (2007). https://doi.org/10.1021/ef070038y
Jahandar Lashaki, M., Khiavi, S., Sayari, A.: Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem. Soc. Rev. (2019). https://doi.org/10.1039/c8cs00877a
Jang, H.T., Park, Y.K., Ko, Y.S., Lee, J.Y., Margandan, B.: Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int. J. Greenhouse Gas Control 3, 545–549 (2009). https://doi.org/10.1016/j.ijggc.2009.02.008
Jeon, S., Jung, H., Kim, S.H., Lee, K.B.: Double-layer structured CO2 adsorbent functionalized with modified polyethyleneimine for high physical and chemical stability. ACS Appl. Mater. Interfaces. 10, 21213–21223 (2018). https://doi.org/10.1021/acsami.8b01749
Jiang, J.X., Su, F., Trewin, A., Wood, C.D., Campbell, N.L., Niu, H., Dickinson, C., Ganin, A.Y., Rosseinsky, M.J., Khimyak, Y.Z., Cooper, A.I.: Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 46, 8574–8578 (2007). https://doi.org/10.1002/anie.200701595
Jiang, J.X., Su, F., Trewin, A., Wood, C.D., Niu, H., Jones, J.T.A., Khimyak, Y.Z., Cooper, A.I.: Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 130, 7710–7720 (2008). https://doi.org/10.1021/ja8010176
Jones, C.W.: CO2 Capture from dilute gases as a component of modern global carbon management. Annu. Rev. Chem. Biomol. Eng. 2, 31 (2011). https://doi.org/10.1146/annurev-chembioeng-061010-114252
Jung, H., Jeon, S., Jo, D.H., Huh, J., Kim, S.H.: Effect of crosslinking on the CO2 adsorption of polyethyleneimine-impregnated sorbents. Chem. Eng. J. 307, 836–844 (2017). https://doi.org/10.1016/j.cej.2016.09.005
Kaiser, R., Kulczyk, A., Rich, D., Willey, R.J., Minicucci, J., Maciver, B.: Effect of pore size distribution of commercial activated carbon fabrics on the adsorption of CWA Simulants from the liquid phase. Ind. Eng. Chem. Res. 46, 6126–6132 (2007). https://doi.org/10.1021/ie061429n
Kamarudin, K.S.N., Alias, N.: Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Process. Technol. 106, 332–337 (2013). https://doi.org/10.1016/j.fuproc.2012.08.017
Keller, L., Ohs, B., Lenhart, J., Abduly, L., Blanke, P., Wessling, M.: High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon N. Y. 126, 338–345 (2018). https://doi.org/10.1016/j.carbon.2017.10.023
Khalil, S.H., Aroua, M.K., Daud, W.M.A.W.: Study on the improvement of the capacity of amine-impregnated commercial activated carbon beds for CO2 adsorbing. Chem. Eng. J. 183, 15–20 (2012). https://doi.org/10.1016/j.cej.2011.12.011
Khatri, R.A., Chuang, S.S.C., Soong, Y., Gray, M.: Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 4, 1514 (2006). https://doi.org/10.1021/ef050402y
Kim, J., Kim, J., Yang, S., Ahn, W.: Mesoporous SAPO-34 with amine-grafting for CO2 capture. Fuel 108, 515–520 (2013). https://doi.org/10.1016/j.fuel.2012.12.020
Kim, C., Cho, H.S., Chang, S., Cho, S.J., Choi, M.: An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea. Energy Environ. Sci. 9, 1803–1811 (2016). https://doi.org/10.1039/c6ee00601a
Kishor, R., Ghoshal, A.K.: High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation. Chem. Eng. J. 300, 236–244 (2016). https://doi.org/10.1016/j.cej.2016.04.055
Klinthong, W., Huang, C., Tan, C.: Polyallylamine and NaOH as a novel binder to pelletize amine-functionalized mesoporous silicas for CO2 capture. Microporous Mesoporous Mater. 197, 278–287 (2014). https://doi.org/10.1016/j.micromeso.2014.06.030
Knöfel, C., Descarpentries, J., Benzaouia, A., Zeleňák, V., Mornet, S., Llewellyn, P.L., Hornebecq, V.: Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide. Microporous Mesoporous Mater. 99, 79–85 (2007). https://doi.org/10.1016/j.micromeso.2006.09.018
Knowles, G.P., Liang, Z., Chaffee, A.L.: Shaped polyethyleneimine sorbents for CO2 capture. Microporous Mesoporous Mater. 238, 14–18 (2017). https://doi.org/10.1016/j.micromeso.2016.03.019
Ko, Y.G., Shin, S.S., Choi, U.S.: Primary, secondary, and tertiary amines for CO2capture: designing for mesoporous CO2adsorbents. J. Colloid Interface Sci. 361, 594 (2011). https://doi.org/10.1016/j.jcis.2011.03.045
Labreche, Y., Lively, R.P., Rezaei, F., Chen, G., Jones, C.W., Koros, W.J.: Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chem. Eng. J. 221, 166–175 (2013). https://doi.org/10.1016/j.cej.2013.01.086
Labreche, Y., Fan, Y., Rezaei, F., Lively, R.P., Jones, C.W., Koros, W.J.: Poly(amide-imide)/silica supported PEI hollow fiber sorbents for postcombustion CO2 capture by RTSA. ACS Appl. Mater. Interfaces. 6, 19336–19346 (2014). https://doi.org/10.1021/am505419w
Lashaki, M.J., Sayari, A.: CO2 capture using triamine-grafted SBA-15: the impact of the support pore structure. Chem. Eng. J. 334, 1260–1269 (2018). https://doi.org/10.1016/j.cej.2017.10.103
Lashaki, M.J., Ziaei-Azad, H., Sayari, A.: Insights into the hydrothermal stability of triamine-functionalized SBA-15 silica for CO2 adsorption. ChemSusChem 10, 4037–4045 (2017). https://doi.org/10.1002/cssc.201701439
Lawson, S., Hajari, A., Rownaghi, A.A., Rezaei, F.: MOF immobilization on the surface of polymer-cordierite composite monoliths through in situ crystal growth. Sep. Purif. Technol. 183, 173–180 (2017). https://doi.org/10.1016/j.seppur.2017.03.072
Lawson, S., Rownaghi, A.A., Rezaei, F.: Carbon hollow fiber-supported metal–organic framework composites for gas adsorption. Energy Technol. 6, 694–701 (2018a). https://doi.org/10.1002/ente.201700657
Lawson, S., Al-Naddaf, Q., Krishnamurthy, A., Amour, M.S., Griffin, C., Rownaghi, A.A., Knox, J.C., Rezaei, F.: UTSA-16 growth within 3D-printed Co-Kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces. 10, 19076–19086 (2018b). https://doi.org/10.1021/acsami.8b05192
Lee, S.Y., Park, S.J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015). https://doi.org/10.1016/j.jiec.2014.09.001
Lee, J.S., Kim, J.H., Kim, J.T., Suh, J.K., Lee, J.M., Lee, C.H.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47, 1237–1242 (2002). https://doi.org/10.1021/je020050e
Lee, S.C., Hsieh, C.C., Chen, C.H., Chen, Y.S.: CO2 adsorption by Y-type zeolite impregnated with amines in indoor air 360–366 (2013). https://doi.org/10.4209/aaqr.2012.05.0134
Lee, C.S., Ong, Y.L., Aroua, M.K., Daud, W.M.A.W.: Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption. Chem. Eng. J. 219, 558–564 (2013). https://doi.org/10.1016/j.cej.2012.10.064
Lee, W.R., Hwang, S.Y., Ryu, D.W., Lim, K.S., Han, S.S., Moon, D., Choi, J., Hong, C.S.: Diamine-functionalized metal-organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci. 7, 744–751 (2014). https://doi.org/10.1039/c3ee42328j
Lee, M., Lee, S., Park, S.: Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture. Int. J. Hydrogen Energy 40, 3415–3421 (2015a). https://doi.org/10.1016/j.ijhydene.2014.12.104
Lee, C.H., Hyeon, D.H., Jung, H., Chung, W., Jo, D.H., Shin, D.K., Kim, S.H.: Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites. J. Ind. Eng. Chem. 23, 251–256 (2015b). https://doi.org/10.1016/j.jiec.2014.08.025
Lee, J.J., Yoo, C.J., Chen, C.H., Hayes, S.E., Sievers, C., Jones, C.W.: silica-supported sterically hindered amines for CO2 capture. Langmuir 34, 12279–12292 (2018). https://doi.org/10.1021/acs.langmuir.8b02472
Leung, D., Caramanna, G., Maroto-Valer, M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2018). https://doi.org/10.1016/j.rser.2014.07.093
Lewis, H., Epstein, P.R., Schlesinger, W.H.: Rising CO2, climate change, and public health : exploring the links to plant biology the harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link repositor (2017). https://doi.org/10.1289/ehp.11501
Li, W., Choi, S., Drese, J.H., Hornbostel, M., Krishnan, G., Eisenberger, P.M., Jones, C.W.: Steam-stripping for regeneration of supported amine-based CO2 adsorbents. Chemsuschem 3, 899–903 (2010). https://doi.org/10.1002/cssc.201000131
Li, K., Jiang, J., Yan, F., Tian, S., Chen, X.: The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl. Energy 136, 750–755 (2014a). https://doi.org/10.1016/j.apenergy.2014.09.057
Li, Z., Yang, K., Liu, G., Deng, G., Li, J., Li, G., Yue, R., Yang, J., Chen, Y.: Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for benzene oxidation. Catal. Lett. 144, 1080–1087 (2014b). https://doi.org/10.1007/s10562-014-1245-1
Li, F.S., Labreche, Y., Lively, R.P., Lee, J.S., Jones, C.W., Koros, W.J.: Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture. Polym. (Guildf). 55, 1341–1346 (2014c). https://doi.org/10.1016/j.polymer.2013.11.040
Li, K., Jiang, J., Tian, S., Yan, F., Chen, X.: Polyethyleneimine-nano silica composites: a low-cost and promising adsorbent for CO2 capture. J. Mater. Chem. A. 3, 2166–2175 (2015). https://doi.org/10.1039/c4ta04275a
Liang, Z., Fu, K., Idem, R., Tontiwachwuthikul, P.: Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. Chem. Eng. 24, 278–288 (2016). https://doi.org/10.1016/j.cjche.2015.06.013
Liao, P.Q., Chen, X.W., Liu, S.Y., Li, X.Y., Xu, Y.T., et al.: Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures. Chem. Sci. 7, 6528–6533 (2016). https://doi.org/10.1039/c6sc00836d
Lin, Z., Liu, Y., Wong, C.P.: Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir 26, 16110 (2010). https://doi.org/10.1021/la102619n
Lin, Y., Kong, C., Chen, L.: Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture. RSC Adv. 2, 6417 (2012). https://doi.org/10.1039/c2ra20641b
Lin, Y., Yan, Q., Kong, C., Chen, L.: Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 14–16 (2013). https://doi.org/10.1038/srep01859
Lin, Z., Wei, J., Geng, L., Mei, D., Liao, L.: An amine double functionalized composite strategy for CO2 adsorbent preparation using a ZSM-5/KIT-6 composite as a support. Energy Technol. 6, 1618–1626 (2018). https://doi.org/10.1002/ente.201700780
Liu, Q., Shi, Y.: Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide. J. Energy Chem. 23, 111–118 (2014). https://doi.org/10.1016/S2095-4956(14)60124-8
Liu, Y., Shi, J., Chen, J., Ye, Q., Pan, H., Shao, Z., Shi, Y.: Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater. 134, 16–21 (2010). https://doi.org/10.1016/j.micromeso.2010.05.002
Liu, Z., Teng, Y., Zhang, K., Cao, Y., Pan, W.: CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials. J. Fuel Chem. Technol. 41, 469–475 (2013). https://doi.org/10.1016/S1872-5813(13)60025-0
Liu, Q., Tang, Z., Wu, M., Zhou, Z.: Design, preparation and application of conjugated microporous polymers. Polym. Int. 63, 381–392 (2014). https://doi.org/10.1002/pi.4640
Liu, F.Q., Li, W., Zhao, J., Li, W.H., Chen, D.M., Sun, L.S., Wang, L., Li, R.X.: Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO2 capture. J. Mater. Chem. A 3, 12252–12258 (2015). https://doi.org/10.1039/c5ta01536g
Liu, F., Kuang, Y., Wang, S., Chen, S., Fu, W.: Preparation and characterization of molecularly imprinted solid amine adsorbent for CO2 adsorption. New J. Chem. 42, 10016–10023 (2018). https://doi.org/10.1039/c8nj00686e
Lively, R.P., Chance, R.R., Kelley, B.T., Deckman, H.W., Drese, J.H., Jones, C.W., Koros, W.J.: Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. (2009). https://doi.org/10.1021/ie9005244
Long, R.Q., Yang, R.T.: Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 123, 2058 (2001). https://doi.org/10.1021/ja003830l
López-Aranguren, P., Builes, S., Fraile, J., López-Periago, A., Vega, L.F., Domingo, C.: Hybrid aminopolymer-silica materials for efficient CO2 adsorption. RSC Adv. 5, 104943–104953 (2015). https://doi.org/10.1039/c5ra20583b
Lu, W., Sculley, J.P., Yuan, D., Krishna, R., Wei, Z., Zhou, H.C.: Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem. Int. Ed. 51, 7480–7484 (2012). https://doi.org/10.1002/anie.201202176
Ma, L., Bai, R., Hu, G., Chen, R., Hu, X., Dai, W., Dacosta, H.F.M., Fan, M.: Capturing CO2 with amine-impregnated titanium oxides. Energy Fuels 27, 5433 (2013). https://doi.org/10.1021/ef401230q
Madden, D., Curtin, T.: Microporous and mesoporous materials carbon dioxide capture with amino-functionalised zeolite- b: a temperature programmed desorption study under dry and humid conditions. Microporous Mesoporous Mater. 228, 310–317 (2016). https://doi.org/10.1016/j.micromeso.2016.03.041
Martínez, F., Sanz, R., Orcajo, G., Briones, D., Yángüez, V.: Amino-impregnated MOF materials for CO2 capture at post-combustion conditions. Chem. Eng. Sci. 142, 55–61 (2016). https://doi.org/10.1016/j.ces.2015.11.033
Mason, J.A., McDonald, T.M., Bae, T.H., Bachman, J.E., Sumida, K., Dutton, J.J., Kaye, S.S., Long, J.R.: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015). https://doi.org/10.1021/jacs.5b00838
McDonald, T.M., Mason, J.A., Kong, X., Bloch, E.D., Gygi, D., Dani, A., Crocellà, V., Giordanino, F., Odoh, S.O., Drisdell, W.S., Vlaisavljevich, B., Dzubak, A.L., Poloni, R., Schnell, S.K., Planas, N., Lee, K., Pascal, T., Wan, L.F., Prendergast, D., Neaton, J.B., Smit, B., Kortright, J.B., Gagliardi, L., Bordiga, S., Reimer, J.A., Long, J.R.: Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015). https://doi.org/10.1038/nature14327
Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011). https://doi.org/10.1016/j.micromeso.2011.02.022
Milner, P.J., Martell, J.D., Siegelman, R.L., Gygi, D., Weston, S.C., Long, J.R.: Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2 (dobpdc). Chem. Sci. 9, 160–174 (2017a). https://doi.org/10.1039/c7sc04266c
Milner, P.J., Siegelman, R.L., Forse, A.C., Gonzalez, M.I., Runčevski, T., Martell, J.D., Reimer, J.A., Long, J.R.: A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism. J. Am. Chem. Soc. 139, 13541–13553 (2017b). https://doi.org/10.1021/jacs.7b07612
Mofarahi, M., Gholipour, F.: Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous Mesoporous Mater. 200, 1–10 (2014a). https://doi.org/10.1016/j.micromeso.2014.08.022
Mofarahi, M., Gholipour, F.: Gas adsorption separation of CO2/CH4 system using zeolite 5A. Micropor. Mesopor. Mater. 200, 1–10 (2014b). https://doi.org/10.1016/j.micromeso.2014.08.022
Mofarahi, M., Khojasteh, Y., Khaledi, H., Farahnak, A.: Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy 33, 1311–1319 (2008). https://doi.org/10.1016/j.energy.2008.02.013
Monazam, E., Shadle, L., Miller, D., Pennline, H., Fauth, D., Hoffman, J., Gray, M.: Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica. Rom. J. Morphol. Embryol. 59, 923–935 (2013). https://doi.org/10.1002/aic
Murdock, C.R., Didas, S.A., Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840 (2016). https://doi.org/10.1021/acs.chemrev.6b00173
Niklas, H., Linnéa, A., Lennart, B., Jinyue, Y.: Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl. Energy 104, 418–433 (2013). https://doi.org/10.1016/j.apenergy.2012.11.034
Niu, M., Yang, H., Zhang, X., Wang, Y., Tang, A.: Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interface 8, 17312 (2016). https://doi.org/10.1021/acsami.6b05044
Ojeda, M., Mazaj, M., Garcia, S., Xuan, J., Maroto-Valer, M.M., Logar, N.Z.: Novel amine-impregnated mesostructured silica materials for CO2 capture. Energy Procedia 114, 2252–2258 (2017). https://doi.org/10.1016/j.egypro.2017.03.1362
Pai, K.N., Baboolal, J.D., Sharp, D.A., Rajendran, A.: Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption. Sep. Purif. Technol. 211, 540–550 (2019). https://doi.org/10.1016/j.seppur.2018.10.015
Park, S.J., Kim, K.D.: Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J. Colloid Interface Sci. (1999). https://doi.org/10.1006/jcis.1998.6058
Park, S., Choi, K., Yu, H.J., Won, Y.J., Kim, C., Choi, M., Cho, S.H., Lee, J.H., Lee, S.Y., Lee, J.S.: Thermal stability enhanced tetraethylenepentamine/silica adsorbents for high performance CO2 capture. Ind. Eng. Chem. Res. 57, 4632–4639 (2018). https://doi.org/10.1021/acs.iecr.7b04912
Parkyns, N.D.: The surface properties of metal oxides. Part II. An infrared study of the adsorption of carbon dioxide on g-alumina. J. Chem. Soc. A 4, 410–417 (1969). https://doi.org/10.1039/j19690000410
Parkyns, N.D.: The influence of thermal pretreatment on the infrared spectrum of carbon dioxide adsorbed on alumina. J. Phys. Chem. 75, 526 (1971). https://doi.org/10.1021/j100674a014
Pera-Titus, M.: Porous inorganic membranes for CO2 capture: present and prospects. Chem Rev. 114(2), 1413–1492 (2013)
Peri, J.B.: Infrared study of adsorption of carbon dioxide, hydrogen chloride, and other molecules on “acid” sites on dry silica—alumina and γ-alumina. J. Phys. Chem. 70, 3168–3179 (1966). https://doi.org/10.1021/j100882a026
Pevida, C., Plaza, M.G., Arias, B., Fermoso, J., Rubiera, F., Pis, J.J.: Surface modification of activated carbons for CO2 capture. Appl. Surf. Sci. 254, 7165–7172 (2008). https://doi.org/10.1016/j.apsusc.2008.05.239
Pham, T.H., Lee, B.K., Kim, J.: Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite. J. Taiwan Inst. Chem. Eng. 66, 239–248 (2016). https://doi.org/10.1016/j.jtice.2016.06.030
Pirngruber, G.D., Guillou, F., Gomez, A., Clausse, M.: A theoretical analysis of the energy consumption of post-combustion CO2 capture processes by temperature swing adsorption using solid sorbents. Int. J. Greenhouse Gas Control 14, 74–83 (2013). https://doi.org/10.1016/j.ijggc.2013.01.010
Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., Pis, J.J.: CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86, 2204–2212 (2007). https://doi.org/10.1016/j.fuel.2007.06.001
Pokhrel, J., Bhoria, N., Anastasiou, S., Tsou, T.: CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018). https://doi.org/10.1016/j.micromeso.2018.03.012
Qi, G., Wang, Y., Estevez, L., Duan, X., Anako, N., Park, A.A., Li, W., Jones, W., Giannelis, E.P.: High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011). https://doi.org/10.1039/c0ee00213e
Quang, D.V., Hatton, T.A., Abu-zahra, M.R.M.: Thermally stable amine-grafted adsorbent prepared by impregnating 3-aminopropyltriethoxysilane on mesoporous silica for CO2 capture. Ind. Eng. Chem. Res. 55, 7842 (2016). https://doi.org/10.1021/acs.iecr.5b04096
Rezaei, F., Grahn, M.: Thermal management of structured adsorbents in CO2 capture processes. Ind. Eng. Chem. Res. 51, 4025–4034 (2012). https://doi.org/10.1021/ie201057p
Rezaei, F., Jones, C.W.: Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 1. Single-component adsorption. Ind. Eng. Chem. Res. 52, 12192–12201 (2013). https://doi.org/10.1021/ie4019116
Rezaei, F., Jones, C.W.: stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture 2 Multicomponent approach. Ind. Eng. Chem. Res. 53, 12103–12110 (2014). https://doi.org/10.1021/ie502024z
Rezaei, F., Webley, P.: Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009). https://doi.org/10.1016/j.ces.2009.08.029
Rezaei, F., Lively, R.P.R., Labreche, Y., Chen, G., Fan, Y., Koros, W.J., Jones, C.W.: Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Appl. Mater. Interfaces 5, 3921–3931 (2013). https://doi.org/10.1021/am400636c
Rezaei, F., Subramanian, S., Kalyanaraman, J., Lively, R.P., Kawajiri, Y., Realff, M.J.: Modeling of rapid temperature swing adsorption using hollow fiber sorbents. Chem. Eng. Sci. 113, 62–76 (2014). https://doi.org/10.1016/j.ces.2014.04.002
Rezaei, F., Sakwa-novak, M.A., Bali, S., Duncanson, D.M., Jones, C.W.: Amine-based solid CO2 adsorbents: effects of pelletization pressure on the physical and chemical properties. Microporous Mesoporous Mater. 204, 34–42 (2015). https://doi.org/10.1016/j.micromeso.2014.10.047
Rezaei, F., Lawson, S., Hosseini, H., Thakkar, H., Hajari, A., Monjezi, S., Rownaghi, A.A.: MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chem. Eng. J. 313, 1346–1353 (2017). https://doi.org/10.1016/j.cej.2016.11.058
Ribeiro, R.P., Sauer, T.P., Lopes, F.V., Moreira, R.F., Grande, C.A.: Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith. J. Chem. Eng. Data 53, 2311–2317 (2008)
Rochelle, G.T.: Thermal degradation of amines for CO2 capture. Curr. Opin. Chem. Eng. 1, 183–190 (2012). https://doi.org/10.1016/j.coche.2012.02.004
Romeo, L.M., Bolea, I., Escosa, J.M.: Integration of power plant and amine scrubbing to reduce CO2 capture costs. Appl. Therm. Eng. 28, 1039–1046 (2008). https://doi.org/10.1016/j.applthermaleng.2007.06.036
Rondeau-Gagné, S., Morin, J.F.: Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 15, 25 (2014). https://doi.org/10.1039/c3cs60210a
Rosenholm, J.M., Penninkangas, A., Lindén, M.: Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine. Chem. Commun. (2006). https://doi.org/10.1039/b607886a
Rownaghi, A.A., Kant, A., Li, X., Thakkar, H., Hajari, A., He, Y., Brennan, P.J., Hosseini, H., Koros, W.J., Rezaei, F.: Aminosilane-grafted zirconia-titiania-silica nanoparticles/torlon hollow fiber composites for CO2 capture. Chemsuschem 9, 1166–1177 (2016). https://doi.org/10.1002/cssc.201600082
Saini, R.K., Chiang, I.W., Peng, H., Smalley, R.E., Billups, W.E., Hauge, R.H., Margrave, J.L.: Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc. 125, 3617 (2003). https://doi.org/10.1021/ja021167q
Sakwa-Novak, M.A., Jones, C.W.: Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air. ACS Appl. Mater. Interfaces 6, 9245–9255 (2014). https://doi.org/10.1021/am501500q
Salehi, S., Anbia, M.: Highly efficient CO2 capture with a metal—organic framework-derived porous carbon impregnated with polyethyleneimine. Appl. Organometallic Chem. 32, 1–11 (2018). https://doi.org/10.1002/aoc.4390
Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012)
Sánchez-Zambrano, K.S., Vilarrasa-García, E., Maia, D.A.S., Bastos-Neto, M., Rodríguez-Castellon, E., Azevedo, D.C.S.: Adsorption microcalorimetry as a tool in the characterization of amine-grafted mesoporous silicas for CO2 capture. Adsorption (2019). https://doi.org/10.1007/s10450-019-00064-y
Santiago, R.G., Siqueira, R.M., Alves, C.A., Vilarrasa-García, E., Maia, D.A.S., Bastos-Neto, M., de Azevedo, D.C.S.: Evaluation of the thermal regeneration of an amine-grafted mesoporous silica used for CO2/N2 separation. Adsorption (2019). https://doi.org/10.1007/s10450-019-00112-7
Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010). https://doi.org/10.1016/j.apsusc.2009.12.070
Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 1, 1956–1962 (2013a). https://doi.org/10.1039/c2ta01343f
Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 uptake and adsorption kinetics of pore-expanded SBA-15 double-functionalized with amino groups. Energy Fuels 27, 7637–7644 (2013b). https://doi.org/10.1021/ef4015229
Sanz, R., Calleja, G., Arencibia, A., Sanz-pérez, E.S.: CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization. Microporous Mesoporous Mater. 209, 165–171 (2015). https://doi.org/10.1016/j.micromeso.2014.10.045
Sanz-Pérez, E.S., Olivares-marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. Int. J. Greenhouse Gas Control 17, 366–375 (2013). https://doi.org/10.1016/j.ijggc.2013.05.011
Sanz-Pérez, E.S., Arencibia, A., Calleja, G., Sanz, R.: Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2adsorption. Microporous Mesoporous Mater. 260, 235–244 (2018). https://doi.org/10.1016/j.micromeso.2017.10.038
Sayari, A., Belmabkhout, Y.: Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010). https://doi.org/10.1021/ja1013773
Sayari, A., Belmabkhout, Y.: CO2 Deactivation of supported amines: does the nature of amine matter? Langmuir 28, 4241 (2012). https://doi.org/10.1021/la204667v
Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171, 760–774 (2011). https://doi.org/10.1016/j.cej.2011.02.007
Sayari, A., Heydari-gorji, A., Yang, Y.: CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834 (2012). https://doi.org/10.1021/ja304888a
Schmidt, J., Werner, M., Thomas, A.: Conjugated microporous polymer networks via yamamoto polymerization. Macromolecules 42, 4426–4429 (2009). https://doi.org/10.1021/ma9005473
Serna-Guerrero, R., Sayari, A.: Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves. Chem. Eng. J. 161, 182–190 (2010). https://doi.org/10.1016/j.cej.2010.04.042
Serna-Guerrero, R., Da, E., Sayari, A.: New insights into the interactions of CO2 with amine-functionalized silica. Ind. Eng. Chem. Res. 47, 9406–9412 (2008). https://doi.org/10.1021/ie801186
Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: an experimental and statistical study. Chem. Eng. Sci. 65, 4166–4172 (2010a). https://doi.org/10.1016/j.ces.2010.04.029
Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model. Chem. Eng. J. 161, 173–181 (2010b). https://doi.org/10.1016/j.cej.2010.04.024
Shakerian, F., Kim, K.H., Szulejko, J.E., Park, J.W.: A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy 148, 10–22 (2015). https://doi.org/10.1016/j.apenergy.2015.03.026
Shirley, A.I., LaCava, A.I.: PSA performance of densely packed adsorbent beds. AIChE J. 41, 1389–1394 (1995). https://doi.org/10.1002/aic.690410605
Siegelman, R.L., McDonald, T.M., Gonzalez, M.I., Martell, J.D., Milner, P.J., Mason, J.A., Berger, A.H., Bhown, A.S., Long, J.R.: Controlling cooperative CO2 adsorption in diamine-appended Mg 2 (dobpdc) metal-organic frameworks. J. Am. Chem. Soc. 139, 10526–10538 (2017). https://doi.org/10.1021/jacs.7b05858
Siriwardane, R.V., Shen, M.S., Fisher, E.P., Losch, J.: Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19, 1153–1159 (2005). https://doi.org/10.1021/ef040059h
Slater, A.G., Cooper, A.I.: Function-led design of new porous materials. Science 348, aaa8075 (2015). https://doi.org/10.1126/science.aaa8075
Smart, S.K., Cassady, A.I., Lu, G.Q., Martin, D.J.: The biocompatibility of carbon nanotubes. Carbon N. Y. 44, 1034 (2006). https://doi.org/10.1016/j.carbon.2005.10.011
Son, W.J., Choi, J.S., Ahn, W.S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008). https://doi.org/10.1016/j.micromeso.2007.10.049
Stevens, J.L., Huang, A.Y., Peng, H., Chiang, I.W., Khabashesku, V.N., Margrave, J.L.: Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett. 3, 331 (2003). https://doi.org/10.1021/nl025944w
Stuckert, N.R., Yang, R.T.: CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ. Sci. Technol. 45, 10257–10264 (2011). https://doi.org/10.1021/es202647a
Su, F., Lu, C., Cnen, W., Bai, H., Feng, J.: CO2 from fl ue gas via multiwalled carbon nanotubes. Sci. Total Environ. 407, 3017–3023 (2009a). https://doi.org/10.1016/j.scitotenv.2009.01.007
Su, F., Lu, C., Cnen, W., Bai, H., Hwang, J.F.: Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci. Total Environ. 407, 3017–3023 (2009b). https://doi.org/10.1016/j.scitotenv.2009.01.007
Su, F., Lu, C., Kuo, S.C., Zeng, W.: Adsorption of CO2 on amine-functionalized y-type zeolites. Energy Fuels 24, 1441–1448 (2010). https://doi.org/10.1021/ef901077k
Su, F., Lu, C., Chen, H.: Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27, 8090–8098 (2011). https://doi.org/10.1021/la201745y
Su, F., Lu, C., Chung, A., Liao, C.: CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption. Appl. Energy 113, 706–712 (2014). https://doi.org/10.1016/j.apenergy.2013.08.001
Subagyono, D.J.N., Liang, Z., Knowles, G.P., Chaffee, A.L.: Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chem. Eng. Res. Des. 89, 1647–1657 (2011). https://doi.org/10.1016/j.cherd.2011.02.019
Tan, L., Tan, B.: Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 46, 3322–3356 (2017). https://doi.org/10.1039/c6cs00851h
Tang, Z., Han, Z., Yang, G., Yang, J.: Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture. Appl. Surf. Sci. 277, 47–52 (2013). https://doi.org/10.1016/j.apsusc.2013.03.142
Taylor, P., Liu, Z., Grande, C.A., Li, P., Yu, J., Rodrigues, A.E., Liu, Z., Grande, C.A., Li, P., Yu, J., Rodrigues, A.E.: Adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A. Sep. Sci. Technol. 46, 37–41 (2011). https://doi.org/10.1080/01496395.2010.513360
Thakkar, H., Eastman, S., Hajari, A., Rownaghi, A.A., Knox, J.C., Rezaei, F.: 3D-Printed Zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces. 8, 27753–27761 (2016). https://doi.org/10.1021/acsami.6b09647
Thakkar, H., Eastman, S., Al-Mamoori, A., Hajari, A., Rownaghi, A.A., Rezaei, F.: Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl. Mater. Interfaces 9, 7489–7498 (2017a). https://doi.org/10.1021/acsami.6b16732
Thakkar, H., Issa, A., Rownaghi, A.A., Rezaei, F.: CO2 Capture from air using amine-functionalized Kaolin-based Zeolites. Chem. Eng. Technol. 40, 1999–2007 (2017b). https://doi.org/10.1002/ceat.201700188
Thakkar, H., Eastman, S., Al-Naddaf, Q., Rownaghi, A.A., Rezaei, F.: 3D-printed metal-organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908–35916 (2017c). https://doi.org/10.1021/acsami.7b11626
Thakkar, H., Lawson, S., Rownaghi, A.A., Rezaei, F.: Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem. Eng. J. 348, 109–116 (2018). https://doi.org/10.1016/j.cej.2018.04.178
Thirion, D., Rozyyev, V., Park, J., Byun, J., Jung, Y., Atilhan, M., Yavuz, C.T.: Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents. Phys. Chem. Chem. Phys. 18, 14177–14181 (2016). https://doi.org/10.1039/c6cp01382a
Thompson, J.A., Brunelli, N.A., Lively, R.P., Johnson, J.R., Jones, C.W., Nair, S.: Tunable CO2 adsorbents by mixed-linker synthesis and postsynthetic modification of zeolitic imidazolate frameworks. J. Phys. Chem. 117, 8198 (2013). https://doi.org/10.1021/jp312590r
Toledo, M., Rojas, C., Montes, E., Veloso, J., Sáez, A.: Use of phase change materials on an adsorbed carbon dioxide storage system. Appl. Therm. Eng. 51, 512 (2013). https://doi.org/10.1016/j.applthermaleng.2012.09.034
Uebel, M., Bott, A.: Influence of complex terrain and anthropogenic emissions on atmospheric CO2 patterns-a high-resolution numerical analysis. Q. J. R. Meteorol. Soc. 144, 34–47 (2018). https://doi.org/10.1002/qj.3182
Veneman, R., Li, Z.S., Hogendoorn, J.A., Kersten, S.R.A., Brilman, D.W.F.: Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents. Chem. Eng. J. 207, 18–26 (2012). https://doi.org/10.1016/j.cej.2012.06.100
Vieira, R.B., Moura, P.A.S., Vilarrasa-García, E., Azevedo, D.C.S., Pastore, H.O.: Polyamine-grafted magadiite high CO2 selectivity at capture from CO2/N2 and CO2/CH4 mixtures. J. CO2 Util. 23, 29–41 (2018). https://doi.org/10.1016/j.jcou.2017.11.004
Vilarrasa-Garcia, E., Moya, E.M.O., Cecilia, J.A., Cavalcante, C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015). https://doi.org/10.1016/j.micromeso.2014.08.032
Wang, Z., Cohen, S.M.: Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315 (2009). https://doi.org/10.1039/b802258p
Wang, X., Song, C.: Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents. Catal. Today 194, 44–52 (2012). https://doi.org/10.1016/j.cattod.2012.08.008
Wang, L., Yang, R.: Increasing Selective CO2 Adsorption on amine-grafted SBA-15 by increasing silanol density. J. Phys. Chem. C 25, 21264–21272 (2011). https://doi.org/10.1021/jp206976d
Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., Song, C.: Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C 113, 7260–7268 (2009). https://doi.org/10.1021/jp809946y
Wang, X., Li, H., Hou, X.J.: Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO. J. Phys. Chem. C 116, 19814–19821 (2012a). https://doi.org/10.1021/jp3052938
Wang, J., Long, D., Zhou, H., Chen, Q., Liu, X., Ling, L.: Surfactant promoted solid amine sorbents for CO2 capture. Energy Environ. Sci. 5, 5742–5749 (2012b). https://doi.org/10.1039/c2ee02272a
Wang, J., Wang, M., Zhao, B., Qiao, W., Long, D., Ling, L.: Mesoporous carbon-supported solid amine sorbents for low-temperature carbon dioxide capture. Ind. Eng. Chem. Res. 52, 5437 (2013a). https://doi.org/10.1021/ie303388h
Wang, X., Ma, X., Song, C., Locke, D.R., Siefert, S., Winans, R.E., Möllmer, J., Lange, M., Möller, A., Gläser, R.: Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas: characterization and sorption properties. Microporous Mesoporous Mater. 169, 103–111 (2013b). https://doi.org/10.1016/j.micromeso.2012.09.023
Wang, J., Wang, M., Zhao, B., Qiao, W., Long, D., Ling, L.: Mesoporous carbon-supported solid amine sorbents for low-temperature carbon dioxide capture. Ind. Eng. Chem. Res. 52, 5437–5444 (2013c). https://doi.org/10.1021/ie303388h
Wang, W., Xiao, J., Wei, X., Ding, J., Wang, X., Song, C.: Development of a new clay supported polyethylenimine composite for CO2 capture. Appl. Energy 113, 334–341 (2014). https://doi.org/10.1016/j.apenergy.2013.03.090
Wang, J., Wang, M., Li, W., Qiao, W., Long, D., Ling, L.: Application of polyethyleneimine-impregnated solid adsorbents for direct capture of low-concentration CO2. AIChE J. 61, 972–980 (2015a). https://doi.org/10.1002/aic
Wang, X., Chen, L., Guo, Q.: Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture. Chem. Eng. J. 260, 573–581 (2015b). https://doi.org/10.1016/j.cej.2014.08.107
Wang, M., Yao, L., Wang, J., Zhang, Z., Qiao, W., Long, D.: Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture. Appl. Energy 168, 282–290 (2016). https://doi.org/10.1016/j.apenergy.2016.01.085
Wang, Y., Zhao, L., Otto, A., Robinius, M., Stolten, D.: A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114, 650–665 (2017a). https://doi.org/10.1016/j.egypro.2017.03.1209
Wang, Y., Du, T., Song, Y., Che, S., Fang, X., Zhou, L.: Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture. Solid State Sci. 73, 27–35 (2017b). https://doi.org/10.1016/j.solidstatesciences.2017.09.004
Wang, Y., Du, T., Song, Y., Che, S., Fang, X., Zhou, L.: Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture. Solid State Sci. 73, 27–35 (2017c). https://doi.org/10.1016/j.solidstatesciences.2017.09.004
Wang, Y., Du, T., Qiu, Z., Song, Y., Che, S., Fang, X.: CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash. Mater. Chem. Phys. 207, 105–113 (2018a). https://doi.org/10.1016/j.matchemphys.2017.12.040
Wang, Y., Du, T., Qiu, Z., Song, Y., Che, S., Fang, X.: CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash. Mater. Chem. Phys. 207, 105–113 (2018b). https://doi.org/10.1016/j.matchemphys.2017.12.040
Watson D, Knox JC, West P, Sorbent structural impacts due to humidity on carbon dioxide removal sorbents for advanced exploration systems. In: 45th International conference on environmental systems, pp. 1–11 (2015)
Wei, J., Shi, J., Pan, H., Zhao, W., Ye, Q., Shi, Y.: Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous Mesoporous Mater. 116, 394–399 (2008). https://doi.org/10.1016/j.micromeso.2008.04.028
Wei, L., Jing, Y., Gao, Z., Wang, Y.: Development of a pentaethylenehexamine-modified solid support adsorbent for CO2 capture from model flue gas. Chin. J. Chem. Eng. 23, 366–371 (2015). https://doi.org/10.1016/j.cjche.2014.11.021
Wen, J.J., Gu, F.N., Wei, F., Zhou, Y., Lin, W.G., Yang, J., Yang, J.Y., Wang, Y., Zou, Z.G., Zhu, J.H.: One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent. J. Mater. Chem. 20, 2840–2846 (2010). https://doi.org/10.1039/b920027d
Wilfong, W.C., Gray, M.L., Kail, B.W., Howard, B.H.: Pelletization of immobilized amine carbon dioxide sorbents with fly ash and poly (vinyl chloride). Energy Technol. 0940, 610–619 (2016a). https://doi.org/10.1002/ente.201500419
Wilfong, W.C., Kail, B.W., Jones, C.W., Pacheco, C., Gray, M.L.: Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: a new class 4 category. ACS Appl. Mater. Interfaces 8, 12780–12791 (2016b). https://doi.org/10.1021/acsami.6b02062
Wilfong, W.C., Kail, B.W., Howard, B.H., De Aquino, F., Estevam, S.T., Gray, M.L.: Robust immobilized amine CO2 sorbent pellets utilizing a poly (chloroprene) polymer binder and fly ash additive. Energy Technol. 5, 228–233 (2017). https://doi.org/10.1002/ente.201600319
Wu, S.H., Lin, H.P.: Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42, 3862 (2013). https://doi.org/10.1039/c3cs35405a
Wu, D., Xu, F., Sun, B., Fu, R., He, H., Matyjaszewski, K.: Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012). https://doi.org/10.1021/cr200440z
Wu, Q., Chen, S., Liu, H.: Effect of surface chemistry of polyethyleneimine-grafted polypropylene fiber on its CO2 adsorption. RSC Adv. 4, 27176–27183 (2014). https://doi.org/10.1039/c4ra01232a
Xian, S., Xu, F., Ma, C., Wu, Y., Xia, Q., Wang, H., Li, Z.: Vapor-enhanced CO2 adsorption mechanism of composite PEI @ ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chem. Eng. J. 280, 363–369 (2015). https://doi.org/10.1016/j.cej.2015.06.042
Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002). https://doi.org/10.1021/ef020058u
Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003). https://doi.org/10.1016/S1387-1811(03)00388-3
Xu, X., Song, C., Miller, B.G., Scaroni, A.W.: Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind. Eng. Chem. Res. 44, 8113–8119 (2005a). https://doi.org/10.1021/ie050382n
Xu, X., Song, C., Miller, B.G., Scaroni, A.W.: Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process. Technol. 86, 1457–1472 (2005b). https://doi.org/10.1016/j.fuproc.2005.01.002
Xu, X., Zhao, X., Sun, L., Liu, X.: Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. J. Nat. Gas Chem. 18, 167–172 (2009). https://doi.org/10.1016/S1003-9953(08)60098-5
Xu, Y., Jin, S., Xu, H., Nagai, A., Jiang, D.: Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42, 8012–8031 (2013). https://doi.org/10.1039/c3cs60160a
Xu, C., Bacsik, Z., Hedin, N.: Adsorption of CO2 on a micro/mesoporous polyimine modified with tris(2-aminoethyl)amine. J. Mater. Chem. A 3, 16229–16234 (2015). https://doi.org/10.1039/C5TA01321F
Yahya, N.H.B., Yeong, Y.F., Lai, L.S.: Synthesis of amino-impregnated ZIF-8 for CO2 adsorption. IOP Conf. Ser. Mater. Sci. Eng. 226, 012164 (2017). https://doi.org/10.1088/1757-899x/226/1/012164
Yan, X., Zhang, L., Zhang, Y., Yang, G., Wan, Z.: Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Ind. Eng. Chem. Res. 50, 3220–3226 (2011a). https://doi.org/10.1021/ie101240d
Yan, X., Zhang, L., Zhang, Y., Qiao, K., Yan, Z., Komarneni, S.: Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924 (2011b). https://doi.org/10.1016/j.cej.2011.01.066
Yang, S.T., Kim, J.Y., Kim, J., Ahn, W.S.: CO2 capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel 97, 435–442 (2012). https://doi.org/10.1016/j.fuel.2012.03.034
Yoon, H.C., Rallapalli, P.B.S., Beum, H.T., Han, S.S., Kim, J.N.: Hybrid postsynthetic functionalization of tetraethylenepentamine onto MIL-101(Cr) for separation of CO2 from CH4. Energy Fuels 32, 1365–1373 (2018). https://doi.org/10.1021/acs.energyfuels.7b03382
Yu, H., Xiang, Q., Fang, M., Yang, Q., Feron, P.: Promoted CO2 absorption in aqueous ammonia. Greenhouse Gases Sci. Technol. 2, 408–418 (2012a). https://doi.org/10.1002/ghg
Yu, C., Huang, C., Tan, C.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012b). https://doi.org/10.4209/aaqr.2012.05.0132
Yu, J., Le, Y., Cheng, B.: Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2, 6784–6791 (2012c). https://doi.org/10.1039/c2ra21017g
Yuan, D., Lu, W., Zhao, D., Zhou, H.C.: Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23, 3723–3725 (2011). https://doi.org/10.1002/adma.201101759
Yue, M.B., Sun, L.B., Cao, Y., Wang, Z.J., Wang, Y., Yu, Q., Zhu, J.H.: Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous Mesoporous Mater. 114, 74–81 (2008). https://doi.org/10.1016/j.micromeso.2007.12.016
Zhang, Z.: Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE J. 59, 2195–2206 (2013). https://doi.org/10.1002/aic
Zhang, X., Qin, H., Zheng, X., Wu, W.: Development of efficient amine-modified mesoporous silica SBA-15 for CO2 capture. Mater. Res. Bull. 48, 3981–3986 (2013). https://doi.org/10.1016/j.materresbull.2013.06.011
Zhang, W., Liu, H., Sun, C., Drage, T.C., Snape, C.E.: Capturing CO2 from ambient air using a polyethyleneimine—silica adsorbent in fl uidized beds. Chem. Eng. Sci. 116, 306–316 (2014). https://doi.org/10.1016/j.ces.2014.05.018
Zhang, W., Liu, H., Sun, Y., Cakstins, J., Sun, C., Snape, C.E.: Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. Appl. Energy 168, 394–405 (2016). https://doi.org/10.1016/j.apenergy.2016.01.049
Zhang, G., Zhao, P., Xu, Y.: Development of amine-functionalized hierarchically porous silica for CO2 capture. J. Ind. Eng. Chem. 54, 59–68 (2017). https://doi.org/10.1016/j.jiec.2017.05.018
Zhang, G., Zhao, P., Hao, L., Xu, Y., Cheng, H.: A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support. Sep. Purif. Technol. 209, 516–527 (2019). https://doi.org/10.1016/j.seppur.2018.07.074
Zhao, X.S., Lu, G.Q., Whittaker, K., Millar, G.J., Zhu, H.Y.: Comprehensive study of surface chemistry of MCM-41 using Si-29 CP/MAS NMR, FTIR, pyridine-TPD, and TGA. J. Phys. Chem. B 101, 6525 (1997). https://doi.org/10.1021/jp971366+
Zhao, L., Bacsik, Z., Hedin, N., Wei, W., Sun, Y., Antonietti, M., Titirici, M.M.: Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. Chemsuschem 3, 840–845 (2010). https://doi.org/10.1002/cssc.201000044
Zhao, Y., Ding, H., Zhong, Q.: Preparation and characterization of aminated graphite oxide for CO2 capture. Appl. Surf. Sci. 258, 4301–4307 (2012). https://doi.org/10.1016/j.apsusc.2011.12.085
Zhao, A., Samanta, A., Sarkar, P., Gupta, R.: Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind Eng Chem Res. 52(19), 6480–6491 (2013)
Zhao, T., Jeremias, F., Boldog, I., Nguyen, B., Henninger, S.K., Janiak, C.: High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalt. Trans. 44, 16791–16801 (2015). https://doi.org/10.1039/C5DT02625C
Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L.: Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind. Eng. Chem. Res. 44, 3099–3105 (2005). https://doi.org/10.1021/ie049488t
Zhou, Z., Balijepalli, S.K., Nguyen-Sorenson, A.H.T., Anderson, C.M., Park, J.L., Stowers, K.J.: Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture. Energy Fuels 32, 11701–11709 (2018). https://doi.org/10.1021/acs.energyfuels.8b02864
Zou, L., Sun, Y., Che, S., Yang, X., Wang, X., Bosch, M., Wang, Q., Li, H., Smith, M., Yuan, S., Perry, Z., Zhou, H.C.: Porous organic polymers for post-combustion carbon capture. Adv. Mater. 29, 1–35 (2017). https://doi.org/10.1002/adma.201700229
Zukal, A., Dominguez, I., Mayerová, J., Čejka, J.: Functionalization of delaminated zeolite ITQ-6 for the adsorption of carbon dioxide. Langmuir 25, 10314 (2009). https://doi.org/10.1021/la901156z
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gelles, T., Lawson, S., Rownaghi, A.A. et al. Recent advances in development of amine functionalized adsorbents for CO2 capture. Adsorption 26, 5–50 (2020). https://doi.org/10.1007/s10450-019-00151-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10450-019-00151-0
Keywords
- Amine
- CO2 capture
- Adsorbent
- Capacity
- Selectivity
- Stability