pp 1–13 | Cite as

Evaluation of the thermal regeneration of an amine-grafted mesoporous silica used for CO2/N2 separation

  • Rafaelle G. Santiago
  • Rafael M. Siqueira
  • Caiuã A. Alves
  • Enrique Vilarrasa-García
  • Débora A. S. Maia
  • Moisés Bastos-Neto
  • Diana C. S. de AzevedoEmail author


In view of the promising applicability of adsorption to the capture of CO2 from post-combustion gases, the use of mesoporous silica functionalized with 3-aminopropyltriethoxysilane (APTES) was studied as adsorbent in a fixed bed for CO2–N2 separation under thermal swings. Characterization of the adsorbent performed before and after functionalization indicated that amine grafting was successful. Additionally, CO2 adsorption on a magnetic suspension balance showed a significant increase in uptake of the APTES-functionalized sample over the support, mainly at low relative pressures. Relatively high values of adsorption enthalpy suggest the occurrence of chemical adsorption attributed to CO2 bonding with the amines. Breakthrough curves were measured for pure CO2, N2 and the CO2/N2 (15/75% v/v) mixture, which showed good agreement with respect to the uptake of the individual gases, as determined from gravimetric tests. Full CO2 desorption from the bed required a temperature rise, which suggests that these materials may be suitable for TSA cyclic processes. A temperature of 90 °C was enough for a complete regeneration of the adsorbent during the desorption phase under dynamic conditions. The material showed very stable behavior after 20 successive cycles.


Silica APTES CO2 Adsorption TSA 



The authors acknowledge financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).


  1. Alkhabbaz, M.A., Bollini, P., Foo, G.S., Sievers, C., Jones, C.W.: Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines. J. Am. Chem. Soc. 136(38), 13170–13173 (2014). CrossRefGoogle Scholar
  2. Barret, E.P., Joyner, L.G., Halend, P.P.: The determination of pore volume and area distributions in porous substances. i. computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 8 (1951)Google Scholar
  3. Bastos-Neto, M., Moeller, A., Staudt, R., Böhm, J., Gläser, R.: Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes. Sep. Purif. Technol. 77(2), 251–260 (2011). CrossRefGoogle Scholar
  4. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley & Sons Inc., New York (2002)Google Scholar
  5. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938). CrossRefGoogle Scholar
  6. Caplow, M.: Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90(24), 6795–6803 (1968). CrossRefGoogle Scholar
  7. Chakravartula Srivatsa, S., Bhattacharya, S.: Amine-based CO2 capture sorbents: a potential CO2 hydrogenation catalyst. J. CO2 Util. 26, 397–407 (2018). CrossRefGoogle Scholar
  8. Chang, F.-Y., Chao, K.-J., Cheng, H.-H., Tan, C.-S.: Adsorption of CO2 onto amine-grafted mesoporous silicas. Sep. Purif. Technol. 70(1), 87–95 (2009). CrossRefGoogle Scholar
  9. Chen, C., Son, W.-J., You, K.-S., Ahn, J.-W., Ahn, W.-S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161(1–2), 46–52 (2010). CrossRefGoogle Scholar
  10. da Silva, F.W.M., Maia, D.A.S., Oliveira, R.S., Moreno-Piraján, J.C., Sapag, K., Cavalcante, C.L., Zgrablich, G., Azevedo, D.C.S.: Adsorption microcalorimetry applied to the characterisation of adsorbents for CO2 capture. Can. J. Chem. Eng. 90(6), 1372–1380 (2012). CrossRefGoogle Scholar
  11. dos Santos, T.C., Bourrelly, S., Llewellyn, P.L., Carneiro, J.W., Ronconi, C.M.: Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies. Phys. Chem. Chem. Phys. 17(16), 11095–11102 (2015). CrossRefGoogle Scholar
  12. Dreisbach, F., Staudt, R., Keller, J.U.: High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption 5(3), 215–227 (1999). CrossRefGoogle Scholar
  13. Hahn, M.W., Steib, M., Jentys, A., Lercher, J.A.: Mechanism and kinetics of CO2 adsorption on surface bonded amines. J. Phys. Chem. C 119(8), 4126–4135 (2015). CrossRefGoogle Scholar
  14. Hedin, N., Andersson, L., Bergström, L., Yan, J.: Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl. Energy 104, 418–433 (2013). CrossRefGoogle Scholar
  15. Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption of carbon dioxide on modified mesoporous materials in the presence of water vapor. In: Steen, E.v., Callanan, L.H., Claeys, M. (eds.) 14th International Zeolite Conference, Cape Town 2004, vol. Part C, pp. 2995-3002. Studies in Surface Science and CatalysisGoogle Scholar
  16. Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 84(1–3), 357–365 (2005). CrossRefGoogle Scholar
  17. Ho, M.T., Allinson, G.W., Wiley, D.E.: Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. Eng. Chem. Res. 47(14), 4883–4890 (2008). CrossRefGoogle Scholar
  18. IEA: Global Energy & CO2 Status Report. (2018)
  19. IPCC: Special Report on Carbon Dioxide Capture and Storage. (2005)Google Scholar
  20. Le Thi, M.U., Lee, S.-Y., Park, S.-J.: Preparation and characterization of PEI-loaded MCM-41 for CO2 capture. Int. J. Hydrogen Energy 39(23), 12340–12346 (2014). CrossRefGoogle Scholar
  21. Kargari, A., Ravanchi, M.T.: Carbon Dioxide: Capturing and Utilization. In: Liu, D.G. (ed.) Greenhouse gases Capturing, Utilization and Reduction. InTech, Rijeka (2012)Google Scholar
  22. Kim, S., Ida, J., Guliants, V.V., Lin, Y.S.: Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J Phys. Chem B 109(13), 6287–6293 (2005). CrossRefGoogle Scholar
  23. Knöfel, C., Martin, C., Hornebecq, V., Llewellyn, P.L.: Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J. Phys. Chem. C 113(52), 21726–21734 (2009). CrossRefGoogle Scholar
  24. Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143(1), 174–179 (2011). CrossRefGoogle Scholar
  25. Olea, A., Sanz-Pérez, E.S., Arencibia, A., Sanz, R., Calleja, G.: Amino-functionalized pore-expanded SBA-15 for CO2 adsorption. Adsorption 19(2–4), 589–600 (2013). CrossRefGoogle Scholar
  26. Parfenov, V.A., Ponomarenko, I.V., Zharkov, S.M., Kirik, S.D.: Controlling the microporosity of SBA-15 silicate material by background salt solution. Glass Phys. Chem. 40(1), 69–78 (2014). CrossRefGoogle Scholar
  27. Rezaei, F., Sakwa-Novak, M.A., Bali, S., Duncanson, D.M., Jones, C.W.: Shaping amine-based solid CO 2 adsorbents: effects of pelletization pressure on the physical and chemical properties. Microporous Mesoporous Mater. 204, 34–42 (2015). CrossRefGoogle Scholar
  28. Rios, R.B., Correia, L.S., Bastos-Neto, M., Torres, A.E.B., Hatimondi, S.A., Ribeiro, A.M., Rodrigues, A.E., Cavalcante, C.L., de Azevedo, D.C.S.: Evaluation of carbon dioxide–nitrogen separation through fixed bed measurements and simulations. Adsorption 20(8), 945–957 (2014). CrossRefGoogle Scholar
  29. Sánchez-Zambrano, K.S., Vilarrasa-García, E., Maia, D.A.S., Bastos-Neto, M., Rodríguez-Castellon, E., Azevedo, D.C.S.: Adsorption microcalorimetry as a tool in the characterization of amine-grafted mesoporous silicas for CO2 capture. Adsorption. (2019). Google Scholar
  30. Sanz-Pérez, E.S., Dantas, T.C.M., Arencibia, A., Calleja, G., Guedes, A.P.M.A., Araujo, A.S., Sanz, R.: Reuse and recycling of amine-functionalized silica materials for CO2 adsorption. Chem. Eng. J. 308, 1021–1033 (2017). CrossRefGoogle Scholar
  31. Sanz-Pérez, E.S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. Int. J. Greenhouse Gas Control 17, 366–375 (2013). CrossRefGoogle Scholar
  32. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Microporous Mesoporous Mater. 158, 309–317 (2012). CrossRefGoogle Scholar
  33. Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171(3), 760–774 (2011). CrossRefGoogle Scholar
  34. Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: an experimental and statistical study. Chem. Eng. Sci. 65(14), 4166–4172 (2010). CrossRefGoogle Scholar
  35. Silva, B., Solomon, I., Ribeiro, A.M., Lee, U.H., Hwang, Y.K., Chang, J.-S., Loureiro, J.M., Rodrigues, A.E.: H2 purification by pressure swing adsorption using CuBTC. Sep. Purif. Technol. 118, 744–756 (2013). CrossRefGoogle Scholar
  36. Siqueira, R.M., Freitas, G.R., Peixoto, H.R., Nascimento, J.F., Musse, A.P.S., Torres, A.E.B., Azevedo, D.C.S., Bastos-Neto, M.: Carbon Dioxide Capture by Pressure Swing Adsorption. Energy Procedia 114, 2182–2192 (2017). CrossRefGoogle Scholar
  37. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). Google Scholar
  38. Vilarrasa-García, E., Cecilia, J.A., Bastos-Neto, M., Cavalcante, C.L., Azevedo, D.C.S., Rodriguez-Castellón, E.: CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption 21(8), 565–575 (2015). CrossRefGoogle Scholar
  39. Vilarrasa-García, E., Cecilia, J.A., Santos, S.M.L., Cavalcante, C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous Mesoporous Mater. 187, 125–134 (2014). CrossRefGoogle Scholar
  40. Vilarrasa-Garcia, E., Moya, E.M.O., Cecilia, J.A., Cavalcante, C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015). CrossRefGoogle Scholar
  41. Wang, L., Yang, R.T.: Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. J. Phys. Chem. C 115(43), 21264–21272 (2011). CrossRefGoogle Scholar
  42. Wei, L., Gao, Z., Jing, Y., Wang, Y.: Adsorption of CO2 from simulated flue gas on pentaethylenehexamine-loaded mesoporous silica support adsorbent. Ind. Eng. Chem. Res. 52(42), 14965–14974 (2013). CrossRefGoogle Scholar
  43. Yan, X., Zhang, L., Zhang, Y., Yang, G., Yan, Z.: Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Ind. Eng. Chem. Res. 50(6), 3220–3226 (2011). CrossRefGoogle Scholar
  44. Yıldız, M.G., Davran-Candan, T., Günay, M.E., Yıldırım, R.: CO2 capture over amine-functionalized MCM-41 and SBA-15: exploratory analysis and decision tree classification of past data. J. CO2 Util. 31, 27–42 (2019). CrossRefGoogle Scholar
  45. Zhang, G., Zhao, P., Hao, L., Xu, Y.: Amine-modified SBA-15(P): a promising adsorbent for CO2 capture. J. CO2 Util. 24, 22–33 (2018). CrossRefGoogle Scholar
  46. Zhao, A., Samanta, A., Sarkar, P., Gupta, R.: Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind. Eng. Chem. Res. 52(19), 6480–6491 (2013). CrossRefGoogle Scholar
  47. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rafaelle G. Santiago
    • 1
  • Rafael M. Siqueira
    • 1
  • Caiuã A. Alves
    • 1
  • Enrique Vilarrasa-García
    • 1
  • Débora A. S. Maia
    • 1
  • Moisés Bastos-Neto
    • 1
  • Diana C. S. de Azevedo
    • 1
    Email author
  1. 1.Universidade Federal do Ceará, Departamento de Engenharia Química, Grupo de Pesquisa em Separações por Adsorção (GPSA)FortalezaBrazil

Personalised recommendations