Skip to main content
Log in

Deacidification of vegetable oil by extraction with solvent recovery

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Deacidification of a vegetable oil by extraction and regeneration of the solvent by means of adsorption was studied. This novel approach to solvent regeneration is posed as an alternative to distillation in systems with high solvent-to-feed ratios in which evaporation of large solvent amounts is economically unattractive. An example was chosen of deacidification of sunflower oil by extraction with methanol and regeneration of the alcohol by adsorption over activated carbon. The example has application for the biodiesel and technical oils industries. The results showed that high temperatures of extraction increased the acid–methanol partition coefficient but also the mutual solubility of oil and methanol. One extraction stage with a solvent-to feed ratio of 20 (vol:vol) reduced the oil acidity to acceptable values. Regeneration of the extract by adsorption over activated carbon was found to be efficient. For regenerating the bed, elution with a hot solvent was studied. Adsorbent regeneration was completed to a high degree, with elution temperature being the most important variable. For exploring the influence of process variables on the performance of extraction-adsorption, simulation was used. Necessary parameters for mass transfer and adsorption were fitted from breakthrough tests with the aid of a linear driving force model. Simulation results confirmed the viability of the proposed process as an alternative for solvent regeneration of extraction units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas, A.S., Albayati, T.M., Alismaeel, Z.T., Doyle, A.M.: Kinetics and mass transfer study of oleic acid esterification over prepared nanoporous HY zeolite. Iraqi J. Chem. Pet. Eng. 17, 47–60 (2016)

    Google Scholar 

  • Ayrance, E., Duman, O.: Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. J. Hazard. Mater. 136, 542–552 (2006)

    Article  CAS  Google Scholar 

  • Balat, M., Balat, H.: Progress in biodiesel processing. Appl. Energy 87, 1815–1835 (2010)

    Article  CAS  Google Scholar 

  • Bayrak, Y.: Application of Langmuir isotherm to saturated fatty acid adsorption. Microporous Mesoporous Mater. 87, 203–206 (2006)

    Article  CAS  Google Scholar 

  • Boehm, H.P.: Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994)

    Article  CAS  Google Scholar 

  • Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Björnbom, E., Minkova, V., Goranova, M.: Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process. Technol. 87, 899–905 (2006)

    Article  CAS  Google Scholar 

  • Busto, M., Tarifa, E.E., Vera, C.R.: Coupling solvent extraction units to cyclic adsorption units. Int. J. Chem. Eng. (2018). https://doi.org/10.1155/2018/1620218

    Article  Google Scholar 

  • Carr, R.A.: Degumming and refining practices in the U.S. JAOCS 53, 347–352 (1976)

    Article  CAS  Google Scholar 

  • Chai, M., Tu, Q., Lu, M., Yang, Y.J.: Esterification pretreatment of free fatty acid in biodiesel production from laboratory to industry. Fuel Process. Technol. 125, 106–113 (2014)

    Article  CAS  Google Scholar 

  • Cmolik, J., Pokorny, J.: Physical refining of endible oil. Eur. J. Lipid Sci. Technol. 102, 472–486 (2000)

    Article  CAS  Google Scholar 

  • Cuevas, M.S., Rodrigues, C.E.C., Meirelles, A.J.A.: Effect of solvent hydration and temperature in the deacidification process of sunflower oil using ethanol. J. Food Eng. 95, 291–297 (2009)

    Article  CAS  Google Scholar 

  • El-Sayed, Y., Bandosz, T.J.: Effect of increased basicity of activated carbon surface on valeric acid adsorption from aqueous solution activated carbon. Phys. Chem. Chem. Phys. 5, 4892–4898 (2003)

    Article  CAS  Google Scholar 

  • El-Sayed, Y., Bandosz, T.J.: Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. J. Colloid Interface Sci. 273, 64–72 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Farook, A., Ravendran, S.: Saturated fatty acid adsorption by acidified rice hull ash. JAOCS 77, 437–440 (2000)

    Article  CAS  Google Scholar 

  • Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfão, J.J.M.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999)

    Article  CAS  Google Scholar 

  • Frega, N., Mozzon, M., Lercker, G.: Effects of free fatty acids on oxidative stability of vegetable oil. JAOCS 76, 325–329 (1999)

    Article  CAS  Google Scholar 

  • Freitas, A.F., Mendes, M.F., Coelho, G.L.V.: Thermodynamic study of fatty acids adsorption on different adsorbents. J. Chem. Thermodyn. 39, 1027–1037 (2007)

    Article  CAS  Google Scholar 

  • Ge, X., Wu, Z., Yan, Y., Cravotto, G., Ye, B.-C.: Microwave-assisted modification of activated carbon with ammonia for efficient pyrene adsorption. J. Ind. Eng. Chem. 39, 27–36 (2016)

    Article  CAS  Google Scholar 

  • Ghaedi, M., Golestani Nasab, A., Khodadoust, S., Rajabi, M., Azizian, S.: Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. J. Ind. Eng. Chem. 20, 2317–2324 (2014)

    Article  CAS  Google Scholar 

  • Glueckauf, E.: Theory of chromatography. Part 9. The “theoretical plate” concept in column separations. Trans. Faraday Soc. 51, 34–42 (1995)

    Article  Google Scholar 

  • Ho, K.-C., Chen, C.-L., Hsiao, P.-X., Wu, M.-S., Huang, C.-C., Chang, J.-S.: Biodiesel production from waste cooking oil by two-step catalytic conversion. Energy Procedia 61, 1302–1305 (2014)

    Article  CAS  Google Scholar 

  • Idiris, M., Farook, S.: Adsorption isotherms of fatty acids on rice hull ash in a model system. JAOCS 71, 1363–1366 (1994)

    Article  Google Scholar 

  • Isernia, L.F.: Study of the influence of physical–chemical properties of steamed H-MOR zeolites in the mechanism of adsorption of fatty acids and their esterification. Microporous Mesoporous Mater. 200, 19–26 (2014)

    Article  CAS  Google Scholar 

  • Lashaki, M.J., Atkinson, J.D., Hashisho, Z., Phillips, J.H., Anderson, J.E., Nichols, M.: The role of beaded activated carbon’s surface oxygen groups on irreversible adsorption of organic vapors. J. Hazard. Mater. 317, 284–294 (2016)

    Article  CAS  Google Scholar 

  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M.: Sorption isotherms: a review on physical bases modeling and measurement. Appl. Geochem. 22, 249–275 (2007)

    Article  CAS  Google Scholar 

  • Lin, H.-R., Lin, C.-I.: Kinetics of adsorption of free fatty acids from water-degummed and alkali-refined soy oil using regenerated clay. Sep. Purif. Technol. 44, 258–265 (2005)

    Article  CAS  Google Scholar 

  • Manuale, D.L., Mazzieri, V.A., Torres, G., Vera, C.R., Yori, J.C.: Non-catalytic biodiesel process with adsorption-based refining. Fuel 90, 1188–1196 (2011)

    Article  CAS  Google Scholar 

  • Manuale, D.L., Torres, G.C., Badano, J.M., Vera, C.R., Yori, J.C.: Adjustment of the biodiesel free fatty acids content by means of adsorption. Energy Fuels 27, 6763–6772 (2013)

    Article  CAS  Google Scholar 

  • Manuale, D.L., Greco, E., Clementz, A., Torres, G.C., Vera, C.R., Yori, J.C.: Biodiesel purification in one single stage using silica as adsorbent. Chem. Eng. J. 256, 372–379 (2014)

    Article  CAS  Google Scholar 

  • Mazzieri, V.A., Vera, C.R., Yori, J.C.: Adsorptive properties of silica gel for biodiesel refining. Energy Fuels 22, 4281–4284 (2008)

    Article  CAS  Google Scholar 

  • Mestre, A.S., Pires, R.A., Aroso, I., Fernandes, E.M., Pinto, M.L., Reis, R.L., Andrade, M.A., Pires, J., Silva, S.P., Carvalho, A.P.: Activated carbons prepared from industrial pre-treated cork: sustainable adsorbents for pharmaceutical compounds removal. Chem. Eng. J. 53, 408–417 (2014)

    Article  CAS  Google Scholar 

  • Miyashita, K., Takagi, T.: Study on the oxidative rate and prooxidant activity of free fatty acids. JAOCS 63, 1380–1384 (1986)

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C., Ferro-García, M.A., Joly, J.P., Bautista-Toledo, I., Carrasco-Marín, F., Rivera-Utrilla, J.: Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11, 4386–4392 (1995)

    Article  CAS  Google Scholar 

  • Noureddini, H., Teoh, B.C., Clements, L.D.: Viscosities of vegetable oils and fatty acids. JAOCS 69, 1189–1191 (1992)

    Article  CAS  Google Scholar 

  • OCS Official Method Ca 5a-40. Revised 2017. Free fatty acids in crude and refined fats and oils

  • Perraud, J.J.: Method for removing impurities from solvent extraction solutions US Patent Appl. 2002, 20040014589 A1

  • Proctor, A., Palaniappan, S.: Adsorption of soy oil free fatty acids by rice hull ash. JAOCS 67, 15–17 (1990)

    Article  CAS  Google Scholar 

  • Proctor, A., Adhikari, C., Blyholder, G.D.: Mode of oleic acid adsorption on rice hull ash cristobalite. JAOCS 72, 331–335 (1995)

    Article  CAS  Google Scholar 

  • Rajniak, P.: Analysis of a one-component sorption in a single adsorbent particle by the orthogonal collocation method. IV. One-point collocation method and linear driving-force approximation. Chem. Pap. 39, 447–457 (1985)

    CAS  Google Scholar 

  • Rivera-Utrilla, J., Gómez-Pacheco, C.V., Sánchez-Polo, M., López-Peñalver, J.J., Ocampo-Pérez, R.: Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J. Environ. Manag. 131, 16–24 (2013)

    Article  CAS  Google Scholar 

  • Rodrigues, C.E.C., Gonçalves, C.B., Batista, E., Meirelles, A.J.A.: Deacidification of vegetable oils by solvent extraction. Recent Pat. Eng. 1, 95–102 (2007)

    Article  CAS  Google Scholar 

  • Sato, S., Yoshihara, K., Moriyama, K., Machida, M., Tatsumoto, H.: Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution. Appl. Surf. Sci. 253, 8554–8559 (2007)

    Article  CAS  Google Scholar 

  • Schindler, H.D., Treybal, R.E.: Continuous-phase mass-transfer coefficients for liquid extraction in agitated vessels. AIChE J. 14, 790–797 (1968)

    Article  CAS  Google Scholar 

  • Smits, G.: Measurement of the diffusion coefficient of free fatty acid in groundnut oil by the capillary-cell method. JAOCS 53, 122–124 (1976)

    Article  CAS  Google Scholar 

  • Soriano, N.U., Venditti, R., Argyropoulos, D.S.: Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88, 560–565 (2009)

    Article  CAS  Google Scholar 

  • Szymanski, G.S., Karpinski, Z., Biniak, S., Swiatkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639 (2002)

    Article  CAS  Google Scholar 

  • Taylor, D.R., Ungermann, C.B., Demidowicz, Z.: The adsorption of fatty acids from vegetable oils with zeolites and bleaching clay/zeolite blends. J. Am. Oil Chem. Soc. 61, 1372–1379 (1984)

    Article  CAS  Google Scholar 

  • Tseng, R.L.: Mesopore control of high surface area NaOH-activated carbon. J. Colloid Interface Sci. 303, 494–502 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Topallar, H., Bayrak, Y.: Investigation of adsorption isotherms of myristic, palmitic and stearic scids on rice hull ash. Turk. J. Chem. 23, 193–198 (1999)

    CAS  Google Scholar 

  • Türkay, S., Civelekoglu, H.: Deacidification of sulfur olive oil, I. Single-stage liquid-liquid extraction of miscella with ethyl alcohol. JAOCS 68, 83–86 (1991)

    Article  Google Scholar 

  • Vera, C.R., Busto, M., Yori, J.C., Torres, G.C., Manuale, D.L., Canavese, S., Sepúlveda, J.: Adsorption in Biodiesel Refining: A Review. InTech Open Access Publishers, Croatia (2011)

    Google Scholar 

  • Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers. Chem. Eng. Sci. 33, 1375–1384 (1978)

    Article  CAS  Google Scholar 

  • Wiśniewska, M., Nowicki, P., Nosal-Wiercińska, A., Pietrzak, R., Szewczuk-Karpisz, K., Ostolska, I., Sternik, D.: Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones. Colloids Surf. A 514, 137–145 (2017)

    Article  CAS  Google Scholar 

  • Zondlo, J.W., Velez, M.L.: Development of surface area and pore structure for activation of anthracite coal. Fuel Process. Technol. 88, 369–374 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed with the funding of CONICET (PIP Grants 11220130100457CO and 11420110100235CO) and Universidad Nacional del Litoral (CAI+D Grant 50420150100074LI). We are gratefully indebted to Claudio Perezlindo, Pablo Ilari and Diego Sologuren for the construction, troubleshooting and optimization of extraction, adsorption and pumping equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Busto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busto, M., Vera, C.R. Deacidification of vegetable oil by extraction with solvent recovery. Adsorption 25, 1397–1407 (2019). https://doi.org/10.1007/s10450-019-00102-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00102-9

Keywords

Navigation