Skip to main content
Log in

Adsorption of norfloxacin on a hexagonal mesoporous silica: isotherms, kinetics and adsorbent reuse

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption of the antibiotic norfloxacin (NFX) on MCM-41 type mesoporous silica has been studied in batch experiments by performing adsorption kinetics and isotherms under different conditions. Regeneration of the adsorbent and reuse studies were also carried out and are discussed. On the one hand, the adsorption is very fast and strongly dependent on pH, increasing from 30.6 µmol g−1 at pH 3.0 to 192.3 µmol g−1 at pH 7.0 and then decreasing up to 29.6 µmol g−1 as pH increases. The adsorption takes place by direct binding of NFX to silica active sites through electrostatic interactions and H-bonds formations, as deduced from adsorption experiments at several ionic strengths and temperatures. The hydrophobic conformation of the antibiotic zwitterion seems to play also a key role on the maximum adsorption at neutral pH. The presence of calcium ions strongly increases the adsorption of NFX at pH > 4.5 due to the formation of ternary NFX-Ca2+-MCM-41 complexes by calcium-bridging. After the first cycle of regeneration through washing using several solvents, the studied solid significantly reduces its removal efficiency—up to 60%—but then it remains constant for another three cycles. The analysis of thermodynamic parameters suggests that the adsorption is exothermic (− 28.8 kJ mol−1) and spontaneous in nature. On the other hand, the capacity of MCM-41 to remove a concentration of the antibiotic commonly-found in water environments is still being too low if it compares with other adsorbents. Improving the silica surface reactivity should be the main goal by the researchers in order to use the material as adsorbent of this kind of molecules in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aristilde, L., Sposito, G.: Molecular modeling of metal complexation by a fluoroquinolone antibiotic. Environ. Toxicol. Chem. 27, 2304–2310 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Brigante, M., Avena, M.: Biotemplated synthesis of mesoporous silica for doxycycline removal. Effect of pH, temperature, ionic strength and Ca2+ concentration on the adsorption behaviour. Microporous Mesoporous Mat. 225, 534–542 (2016)

    Article  CAS  Google Scholar 

  • Brigante, M., Avena, M.: Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution. Microporous Mesoporous Mat. 191, 1–9 (2014)

    Article  CAS  Google Scholar 

  • Brigante, M., Zanini, G., Avena, M.: Effect of pH, anions and cations on the dissolution kinetics of humic acid particles. Colloid Surf. A 347, 180–186 (2009)

    Article  CAS  Google Scholar 

  • Brown, M.G., Balkwill, D.L.: Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb. Ecol. 57, 484–493 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Chang, W.C., Deka, J.R., Wu, H.Y., Shieh, F.K., Huang, S.Y., Kao, H.M.: Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl. Catal. B 142–143, 817–827 (2013)

    Article  CAS  Google Scholar 

  • Chen, F., Zhou, C., Li, G., Peng, F.: Thermodynamics and kinetics of glyphosate adsorption on resin D301. Arab. J. Chem. 9, S1665–S1669 (2016)

    Article  CAS  Google Scholar 

  • Chen, M., Chu, W.: Efficient degradation of an antibiotic norfloxacin in aqueous solution via a simulated solar-light-mediated Bi2WO6 process. Ind. Eng. Chem. Res. 51, 4887–4893 (2012)

    Article  CAS  Google Scholar 

  • Chen, W., Li, X., Pan, Z., Bao, Y., Ma, S., Li, L.: Efficient adsorption of norfloxacin by Fe-MCM-41 molecular sieves: kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 281, 397–403 (2015a)

    Article  CAS  Google Scholar 

  • Chen, Y., Lan, T., Duan, L., Wang, F., Zhao, B., Zhang, S., Wei, W.: Adsorptive removal and adsorption kinetics of fluoroquinolone by nano-hydroxyapatite. PLoS ONE 10, e0145025 (2015b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzariai, A., Hafidi, M., Khadra, A., Aemig, Q., El Fels, L., Barret, M., Merlina, G., Patureau, D., Pinelli, E.: Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 359, 465–481 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Evstigneev, M.P., Rybakova, K.A., Davies, D.B.: Complexation of norfloxacin with DNA in the presence of caffeine. Biophys. Chem. 121, 84–95 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Golet, E.M., Alder, A.C., Giger, W.: Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 36, 3645–3651 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, R., Ternes, T.A., Haberer, K., Kratz, K.L.: Occurrence of antibiotics in the environment. Sci. Total Environ. 225, 109–118 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Wang, W., Zhu, Z., Chang, H., Pan, F., Lin, B.: Quantitative structure-activity relationship model for prediction of genotoxic potential for quinolone antibacterials. Environ. Sci. Technol. 41, 4806–4812 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Huang, M., Zhou, T., Wu, X., Mao, J.: Adsorption and degradation of norfloxacin by a novel molecular imprinting magnetic Fenton-like catalyst. Chin. J. Chem Eng. 23, 1698–1704 (2015)

    Article  CAS  Google Scholar 

  • Juang, L.C., Wang, C.C., Lee, C.K.: Adsorption of basic dyes onto MCM-41. Chemosphere 64(11), 1920–1928 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T.: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Kong, X., Feng, S., Zhang, X., Li, Y.: Effects of bile salts and divalent cations on the adsorption of norfloxacin by agricultural soils. J. Environ. Sci. 26, 845–854 (2014)

    Google Scholar 

  • Larsson, D.G.J., Pedro, C.D., Paxeus, N.: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Wang, Z., Xie, X., Zhu, J., Li, R., Qin, T.: Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloid Surf. A 514, 126–136 (2017)

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, J., Zhang, C., Ren, L.: Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics. Chem. Eng. J. 171, 431–438 (2011)

    Article  CAS  Google Scholar 

  • Lopez-Serna, R., Jurado, A., Vazquez-Sune, E., Carrera, J., Petrovic, M., Barceló, D.: Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ. Pollut. 174, 305–315 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Lorphensri, O., Intravijit, J., Sabatini, D.A., Kibbey, T.C.G., Osathaphan, K., Saiwan, C.: Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium. Water Res. 40, 1481–1491 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Martinez, L., Bilski, P., Chignell, C.F.: Effect of magnesium and calcium complexation on the photochemical properties of norfloxacin. Photochem. Photobiol. 64, 911–917 (1996)

    Article  CAS  Google Scholar 

  • Mureseanu, M., Reiss, A., Stefanescu, I., David, E., Parvulescu, V., Renard, G., Hulea, V.: Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 73, 1499–1504 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Parolo, M.E., Avena, M.J., Pettinari, G.R., Baschini, M.T.: Influence of Ca2+ on tetracycline adsorption on montmorillonite. J. Colloid Interface Sci. 368, 420–426 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Peng, H., Feng, S., Zhang, X., Li, Y., Zhang, X.: Adsorption of norfloxacin onto titanium oxide: effect of drug carrier and dissolved humic acid. Sci. Total Environ. 438, 66–71 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Puddu, V., Perry, C.C.: Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6, 6356–6363 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Ross, D.L., Riley, C.M.: Aqueous solubilities of some variously substituted quinolone antimicrobials. Int. J. Pharm. 63, 237–250 (1990)

    Article  CAS  Google Scholar 

  • Sarmah, A.K., Meyer, M.T., Boxall, A.B.: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725–759 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Serna-Galvis, E.A., Ferraro, F., Silva-Agredo, J., Torres-Palma, R.A.: Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res. 122, 128–138 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Smirnova, N., Fesenko, T., Zhukovsky, M., Goworek, J., Eremenko, A.: Photodegradation of stearic acid adsorbed on superhydrophilic TiO2 surface: in situ FT-IR and LDI study. Nanoscale Res. Lett. 10, 500 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sposito, G.: The Surface Chemistry of Natural Particles. Oxford University Press, New York (2004)

    Google Scholar 

  • Tang, Y., Guo, H., Xiao, L., Yu, S., Gao, N., Wang, Y.: Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloid Surface A 424, 74–80 (2013)

    Article  CAS  Google Scholar 

  • Tanis, E., Hanna, K., Emmanuel, E.: Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz. Colloid Surface A 327, 57–63 (2008)

    Article  CAS  Google Scholar 

  • Turcu, I., Bogdan, M.: Size dependence of molecular self-assembling in stacked aggregates. 1. NMR investigation of ciprofloxacin self-association. J. Phys. Chem. B 116, 6488–6498 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Turiel, E., Martin-Esteban, A., Tadeo, J.L.: Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Anal. Chim. Acta 562, 30–35 (2006)

    Article  CAS  Google Scholar 

  • Uivarosi, V.: Metal complexes of quinolone antibiotics and their applications: an update. Molecules 18, 11153–11197 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbaniak, B., Kokot, Z.J.: Analysis of the factors that significantly influence the stability of fluoroquinolone–metal complexes. Anal. Chim. Acta 647, 54–59 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D.: Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J. Hydrol. 389, 416–428 (2010)

    Article  CAS  Google Scholar 

  • Wallis, S.C., Charles, B.J., Gahan, L.R., Filippich, L.J., Bredhauer, M.G., Duckworth, P.A.: Interaction of norfloxacin with divalent and trivalent pharmaceutical cations. In vitro complexation and in vivo pharmacokinetic studies in the dog. J. Pharm. Sci. 85, 803–809 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Lu, Y., Zheng, F., Xue, X., Li, N., Liu, D.: Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem. Eng. J. 179, 112–118 (2012)

    Article  CAS  Google Scholar 

  • Yao, H., Lu, J., Wu, J., Lu, Z., Wilson, P.C., Shen, Y.: Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source. Water Air Soil Pollut. 224, 1370 (2013)

    Article  CAS  Google Scholar 

  • Zhang, H., Huang, C.: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 66, 1502–1512 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Zhao, L., Dong, Y., Huang, G.: Sorption of norfloxacin onto humic acid extracted from weathered coal. J. Environ Manag. 102, 165–172 (2012)

    Article  CAS  Google Scholar 

  • Zhang, C.-L., Cui, S.-J., Wang, Y.: Optimized photocatalytic degradation of pefloxacin by TiO2/UV process. Russ. J. Phys. Chem. A 90, 2306–2311 (2016)

    Article  CAS  Google Scholar 

  • Zorita, S., Mártensson, L., Mathiasson, L.: Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 407, 2760–2770 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by SECyT-UNS (PGI UNS 24-Q051), CONICET (PIP 11220110100345) and ANPCYT (PICT 2011-1618). MA and MB are members of CONICET. JOO thanks CONICET for the fellowship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Ortiz Otalvaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otalvaro, J.O., Avena, M. & Brigante, M. Adsorption of norfloxacin on a hexagonal mesoporous silica: isotherms, kinetics and adsorbent reuse. Adsorption 25, 1375–1385 (2019). https://doi.org/10.1007/s10450-019-00100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00100-x

Keywords

Navigation