Advertisement

Adsorption

pp 1–7 | Cite as

DFT investigation of metal doped graphene capacity for adsorbing of ozone, nitrogen dioxide and sulfur dioxide molecules

  • Nastaran Askari ArdehjaniEmail author
  • Davood Farmanzadeh
Article
  • 24 Downloads

Abstract

The capability of nickel, cobalt and iron doped graphene nanosheets (GNSs) for adsorption of ozone, sulfur dioxide and nitrogen dioxide molecules are scrutinized by means of density functional theory calculations. The molecular electrostatic potential, adsorption energy and charge transfer of these gas molecules on metal doped GNS are studied. The high negative adsorption energy values exhibit that the nickel, cobalt and iron dopant atoms can remarkably enhance the interaction of molecules with doped GNS. The range of adsorption energy is − 1.45 to − 4.56 eV for the most stable complexes. Also, ozone can be dissociated on Fe doped GNS. The results indicated that the iron doped GNS is the most effective for adsorbing ozone, nitrogen dioxide and sulfur dioxide molecules. After adsorption of these molecules, the energy gaps of the doped GNSs are decreased in all complexes. This investigation shows that doped GNSs based nanomaterials can be helpful for controlling and capturing of harmful gases.

Keywords

Ozone Sulfur dioxide Nitrogen dioxide Doped graphene DFT 

Notes

Acknowledgements

Authors acknowledge the supports by University of Mazandaran as research facilities and financial grants.

References

  1. Bae, S.-H., Lee, Y., Sharma, B.K., Lee, H.-J., Kim, J.-H., Ahn, J.-H.: Graphene-based transparent strain sensor. Carbon NY 51, 236–242 (2013)CrossRefGoogle Scholar
  2. Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S.: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315 (2010)CrossRefGoogle Scholar
  3. Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5, 26–41 (2010)CrossRefGoogle Scholar
  4. Calderón-Garcidueñas, L., Engle, R., Mora-Tiscareño, A., Styner, M., Gómez-Garza, G., Zhu, H., Jewells, V., Torres-Jardón, R., Romero, L., Monroy-Acosta, M.E.: Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 77, 345–355 (2011)CrossRefGoogle Scholar
  5. Chan, C.K., Yao, X.: Air pollution in mega cities in China. Atmos. Environ. 42, 1–42 (2008)CrossRefGoogle Scholar
  6. Chang, H., Wu, H.: Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 23, 1984–1997 (2013)CrossRefGoogle Scholar
  7. Cortes Arriagada, D., Sanhueza, L., Wrighton, K.: Removal of 4-chlorophenol using graphene, graphene oxide, and a-doped graphene (A = N, B): a computational study. Int. J. Quantum Chem. 113, 1931–1939 (2013)CrossRefGoogle Scholar
  8. Cortés-Arriagada, D., Villegas-Escobar, N.: A DFT analysis of the adsorption of nitrogen oxides on Fe-doped graphene, and the electric field induced desorption. Appl. Surf. Sci. 420, 446–455 (2017)CrossRefGoogle Scholar
  9. Cortés-Arriagada, D., Villegas-Escobar, N., Miranda-Rojas, S., Toro-Labbé, A.: Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations. Phys. Chem. Chem. Phys. 19, 4179–4189 (2017)CrossRefGoogle Scholar
  10. Dai, J., Yuan, J., Giannozzi, P.: Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009)CrossRefGoogle Scholar
  11. Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).  https://doi.org/10.1063/1.458452 CrossRefGoogle Scholar
  12. Delley, B.: Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66, 155125 (2002)CrossRefGoogle Scholar
  13. Denis, P.A.: Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 492, 251–257 (2010)CrossRefGoogle Scholar
  14. Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Rodfers, P. (ed.) Nanoscience and Technology: A Collection Of Reviews from Nature Journals, pp. 11–19. World Scientific, London (2010)Google Scholar
  15. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRefGoogle Scholar
  16. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004)CrossRefGoogle Scholar
  17. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  18. Haagen-Smit, A.J.: Chemistry and physiology of Los Angeles Smog. Ind. Eng. Chem. 44, 1342–1346 (1952).  https://doi.org/10.1021/ie50510a045 CrossRefGoogle Scholar
  19. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44, 129–138 (1977)CrossRefGoogle Scholar
  20. Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y.H., Lee, T.: The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23, 112001 (2012)CrossRefGoogle Scholar
  21. Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151, 362–367 (2008)CrossRefGoogle Scholar
  22. Ko, G., Kim, H.-Y., Ahn, J., Park, Y.-M., Lee, K.-Y., Kim, J.: Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10, 1002–1004 (2010)CrossRefGoogle Scholar
  23. Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)CrossRefGoogle Scholar
  24. Lefohn, A.S., Brocksen, R.W.: Acid rain effects research—a status report. J. Air Pollut. Control Assoc. 34, 1005–1013 (1984)CrossRefGoogle Scholar
  25. Liang, M., Luo, B., Zhi, L.: Application of graphene and graphene-based materials in clean energy-related devices. Int. J. Energy Res. 33, 1161–1170 (2009)CrossRefGoogle Scholar
  26. Lodge Jr., J.P.: Methods of air sampling and analysis. CRC Press, Boca Raton (1988)Google Scholar
  27. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  28. Mustafa, M.G.: Biochemical basis of ozone toxicity. Free Radic. Biol. Med. 9, 245–265 (1990)CrossRefGoogle Scholar
  29. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  30. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  31. Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141 (2002)CrossRefGoogle Scholar
  32. Qu, L.-H., Zhang, J.-M., Xu, K.-W.: Structural, electronic and magnetic properties of 5d transition metal mediated benzene adsorption on graphene: a first-principles study. Synth. Met. 209, 225–231 (2015)CrossRefGoogle Scholar
  33. Rad, A.S., Foukolaei, V.P.: Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth. Met. 210, 171–178 (2015)CrossRefGoogle Scholar
  34. Rahman, M.H., Thakur, J.S., Rimai, L., Perooly, S., Naik, R., Zhang, L., Auner, G.W., Newaz, G.: Dual-mode operation of a Pd/AlN/SiC device for hydrogen sensing. Sens. Actuators B Chem. 129, 35–39 (2008)CrossRefGoogle Scholar
  35. Ramanathan, V., Feng, Y.: Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos. Environ. 43, 37–50 (2009)CrossRefGoogle Scholar
  36. Romero, H.E., Joshi, P., Gupta, A.K., Gutierrez, H.R., Cole, M.W., Tadigadapa, S.A., Eklund, P.C.: Adsorption of ammonia on graphene. Nanotechnology 20, 245501 (2009)CrossRefGoogle Scholar
  37. Rumyantsev, S., Liu, G., Shur, M.S., Potyrailo, R.A., Balandin, A.A.: Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12, 2294–2298 (2012)CrossRefGoogle Scholar
  38. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)CrossRefGoogle Scholar
  39. Usher, C.R., Michel, A.E., Grassian, V.H.: Reactions on mineral dust. Chem. Rev. 103, 4883–4940 (2003)CrossRefGoogle Scholar
  40. Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y.: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)CrossRefGoogle Scholar
  41. Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschlögl, U., Yang, W.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2011)CrossRefGoogle Scholar
  42. Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)CrossRefGoogle Scholar
  43. Wei, Z., Wang, D., Kim, S., Kim, S.-Y., Hu, Y., Yakes, M.K., Laracuente, A.R., Dai, Z., Marder, S.R., Berger, C.: Nanoscale tunable reduction of graphene oxide for graphene electronics. Science (80-) 328, 1373–1376 (2010)CrossRefGoogle Scholar
  44. Welburn, A.: Air pollution and acid rain: the biological impact. Longman Scientific & Technical, New York (1988)Google Scholar
  45. Yuan, W., Shi, G.: Graphene-based gas sensors. J. Mater. Chem. A 1, 10078–10091 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations