pp 1–18 | Cite as

Investigation of CO2 capture using acetate-based ionic liquids incorporated into exceptionally porous metal–organic frameworks

  • Mohanned Mohamedali
  • Amr Henni
  • Hussameldin IbrahimEmail author


The potential advantage of using supported ionic liquids (SILs) for CO2 capture applications has been investigated in this work. The impregnation of 1-ethyl-3-methylimidazolium Acetate [emim][Ac] into two voluminous metal–organic frameworks (MOF-177 and MIL-101) is evaluated using different synthesis methods. The performance of the composite sorbents for CO2 capture has been evaluated using various characterization techniques. The successful incorporation of [emim][Ac] into the pores of MOF-177 and MIL-101 have been confirmed using thermogravimetric analysis and Fourier transform infrared spectroscopy results. Furthermore, the porosity of the as-synthesized samples using different synthesis methods have been measured using N2 adsorption experiments to evaluate the changes in the specific surface areas and pore volumes upon the introduction of [emim][Ac] to the support materials. A significant decrease in the porosity was realized for the [emim][Ac]-confined samples especially when using wet impregnation synthesis method compared to the dry mixing approach. The crystal structures of the MOF-177 and MIL-101 were found to be maintained after the synthetic steps, with some reductions in the X-ray diffraction peak intensities. No improvements in the CO2 uptakes could be achieved for the MIL-101 samples using both synthesis strategies, whereas the [emim][Ac]@MOF-177 samples prepared using wet impregnation method, has shown a remarkable enhancement in the CO2 capacity up to 0.3 mmol/g at 0.15 bar and 303 K. Moreover, the adsorption kinetics in MOF-177 based samples was found to be significantly fast as depicted from the first order rate constant values. The [emim][Ac]@MOF-177 samples exhibited a substantially stable cyclic adsorption–desorption performance up to 10 successive cycles with a considerably fast desorption kinetics.


Metal–organic framework Ionic liquids Impregnation CO2 capture MIL-101 MOF-177 



The authors would like to acknowledge the Faculty of Graduate Studies and Research (FGSR) at the University of Regina for the financial support in the form of a Graduate Research Fellowship (GRF). Acknowledgments are also due to the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and the Clean Energy Technologies Research Institute (CETRi) at the University of Regina.


  1. Álvarez, J.R., Sánchez-González, E., Pérez, E., Schneider-Revueltas, E., Martínez, A., Tejeda-Cruz, A., Islas-Jácome, A., González-Zamora, E., Ibarra, I.A.: Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans. 46, 9192–9200 (2017)CrossRefGoogle Scholar
  2. Babucci, M., Akçay, A., Balci, V., Uzun, A.: Thermal stability limits of imidazolium ionic liquids immobilized on metal-oxides. Langmuir 31, 9163–9176 (2015)CrossRefGoogle Scholar
  3. Babucci, M., Balci, V., Akçay, A., Uzun, A.: Interactions of [BMIM][BF4] with metal oxides and their consequences on stability limits. J. Phys. Chem. C 120, 20089–20102 (2016)CrossRefGoogle Scholar
  4. Carvalho, P.J., Álvarez, V.H., Schröder, B., Gil, A.M., Marrucho, I.M., Aznar, M., Santos, L.M., Coutinho, J.A.: Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures. J. Phys. Chem. B 113, 6803–6812 (2009)CrossRefGoogle Scholar
  5. Chen, C., Feng, N., Guo, Q., Li, Z., Li, X., Ding, J., Wang, L., Wan, H., Guan, G.: Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: synergistic effect between multiple active sites. J. Colloid Interface Sci. 521, 91–101 (2018)CrossRefGoogle Scholar
  6. Gray, M.L., Hoffman, J.S., Hreha, D.C., Fauth, D.J., Hedges, S.W., Champagne, K.J., Pennline, H.W.: Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy Fuels 23, 4840–4844 (2009)CrossRefGoogle Scholar
  7. Hafizovic, J., Bjørgen, M., Olsbye, U., Dietzel, P.D.C., Bordiga, S., Prestipino, C., Lamberti, C., Lillerud, K.P.: The Inconsistency in adsorption properties and powder XRD Data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 129, 3612–3620 (2007)CrossRefGoogle Scholar
  8. Hasib-ur-Rahman, M., Siaj, M., Larachi, F.: Ionic liquids for CO2 capture—development and progress. Chem. Eng. Process. 49, 313–322 (2010)CrossRefGoogle Scholar
  9. Kinik, F.P., Altintas, C., Balci, V., Koyuturk, B., Uzun, A., Keskin, S.: [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Appl. Mater. Interfaces 8, 30992–31005 (2016)CrossRefGoogle Scholar
  10. Koyuturk, B., Altintas, C., Kinik, F.P., Keskin, S., Uzun, A.: Improving gas separation performance of ZIF-8 by [BMIM][BF4] incorporation: interactions and their consequences on performance. J. Phys. Chem. C 121, 10370–10381 (2017)CrossRefGoogle Scholar
  11. Krupiczka, R., Rotkegel, A., Ziobrowski, Z.: Comparative study of CO2 absorption in packed column using imidazolium based ionic liquids and MEA solution. Sep. Purif. Technol. 149, 228–236 (2015)CrossRefGoogle Scholar
  12. Li, X., Cheng, F., Zhang, S., Chen, J.: Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 160, 542–547 (2006)CrossRefGoogle Scholar
  13. Lin, Y., Yan, Q., Kong, C., Chen, L.: Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1859 (2013)CrossRefGoogle Scholar
  14. Liu, A.-H., Ma, R., Song, C., Yang, Z.-Z., Yu, A., Cai, Y., He, L.-N., Zhao, Y.-N., Yu, B., Song, Q.-W.: Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angew. Chem. Int. Ed. 51, 11306–11310 (2012)CrossRefGoogle Scholar
  15. Llewellyn, P.L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., De Weireld, G., Chang, J.-S., Hong, D.-Y., Kyu Hwang, Y., Hwa Jhung, S., Férey, G.: High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101, Langmuir, 24, 7245–7250 (2008)CrossRefGoogle Scholar
  16. Luo, Q., Song, X., Ji, M., Park, S.-E., Hao, C., Li, Y.: Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Appl. Catal., A 478, 81–90 (2014)CrossRefGoogle Scholar
  17. Mason, J.A., Sumida, K., Herm, Z.R., Krishna, R., Long, J.R.: Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011)CrossRefGoogle Scholar
  18. Millward, A.R., Yaghi, O.M.: Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)CrossRefGoogle Scholar
  19. Mohamedali, M., Nath, D., Ibrahim, H., Henni, A.: Review of recent developments in CO2 capture using solid materials: metal organic frameworks (MOFs). In: Moya, B.L., Pous, J. (eds.) Greenhouse Gases. InTech, Rijeka (2016)Google Scholar
  20. Mohamedali, M., Ibrahim, H., Henni, A.: Application of metal–organic frameworks (MOFs) for CO2 separation. In: García, S.N.H. (ed.) Metal-Organic Frameworks, pp. 123–161. Wiley, Weinheim (2018a)CrossRefGoogle Scholar
  21. Mohamedali, M., Ibrahim, H., Henni, A.: Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chem. Eng. J. 334, 817–828 (2018b)CrossRefGoogle Scholar
  22. Moya, C., Alonso-Morales, N., Gilarranz, M.A., Rodriguez, J.J., Palomar, J.: Encapsulated ionic liquids for CO2 capture: using 1-butyl-methylimidazolium acetate for quick and reversible CO2 chemical absorption. ChemPhysChem, 17 (2016) 3891–3899CrossRefGoogle Scholar
  23. Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Abd, M.Z.. Majid: A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 (2015)CrossRefGoogle Scholar
  24. Niu, M., Yang, H., Zhang, X., Wang, Y., Tang, A.: Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interfaces 8, 17312–17320 (2016)CrossRefGoogle Scholar
  25. Praetorius, B., Schumacher, K.: Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage. Energy Policy 37, 5081–5093 (2009)CrossRefGoogle Scholar
  26. Ramdin, M., de Loos, T.W., Vlugt, T.J.H.: State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012)CrossRefGoogle Scholar
  27. Rao, A.B., Rubin, E.S., Technical, A.: Economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36, 4467–4475 (2002)CrossRefGoogle Scholar
  28. Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009)CrossRefGoogle Scholar
  29. Saha, D., Deng, S.: Structural stability of metal organic framework MOF-177. J. Phys. Chem. Lett. 1, 73–78 (2010)CrossRefGoogle Scholar
  30. Sun, X.-L., Deng, W.-H., Chen, H., Han, H.-L., Taylor, J.M., Wan, C.-Q., Xu, G.: A metal–organic framework impregnated with a binary ionic liquid for safe proton conduction above 100 °C. Chemistry A 23, 1248–1252 (2017)Google Scholar
  31. Valkenberg, M.H., deCastro, C., Holderich, W.F.: Immobilisation of ionic liquids on solid supports. Green Chem. 4, 88–93 (2002)CrossRefGoogle Scholar
  32. Villanueva, M., Coronas, A., García, J., Salgado, J.: Thermal stability of ionic liquids for their application as new absorbents. Ind. Eng. Chem. Res. 52, 15718–15727 (2013)CrossRefGoogle Scholar
  33. Wang, X., Akhmedov, N.G., Duan, Y., Luebke, D., Li, B.: Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. J. Mater. Chem. A 1, 2978–2982 (2013)CrossRefGoogle Scholar
  34. Wang, J., Xie, D., Zhang, Z., Yang, Q., Xing, H., Yang, Y., Ren, Q., Bao, Z.: Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal-organic framework. AlChE J. 63, 2165–2175 (2017)CrossRefGoogle Scholar
  35. Xue, W., Li, Z., Huang, H., Yang, Q., Liu, D., Xu, Q., Zhong, C.: Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: a computational study. Chem. Eng. Sci. 140, 1–9 (2016)CrossRefGoogle Scholar
  36. Zeeshan, M., Keskin, S., Uzun, A., Enhancing CO2/CH4 and CO2/N2 separation performances of ZIF-8 by post-synthesis modification with [BMIM][SCN]. Polyhedron 155, 485–492 (2018)CrossRefGoogle Scholar
  37. Zhao, T., Jeremias, F., Boldog, I., Nguyen, B., Henninger, S.K., Janiak, C.: High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalton Trans. 44, 16791–16801 (2015)CrossRefGoogle Scholar
  38. Zhu, J., He, B., Huang, J., Li, C., Ren, T.: Effect of immobilization methods and the pore structure on CO2 separation performance in silica-supported ionic liquids. Microporous Mesoporous Mater. 260, 190–200 (2018)CrossRefGoogle Scholar
  39. Zoubeik, M., Mohamedali, M., Henni, A.: Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids. Fluid Phase Equilib. 419, 67–74 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Process Systems Engineering, Faculty of Engineering and Applied ScienceClean Energy Technologies Research Institute (CETRi), University of ReginaReginaCanada

Personalised recommendations