Skip to main content
Log in

Chemical structure of coal surface and its effects on methane adsorption under different temperature conditions

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this study, the surface chemical functional groups of six different ranked Chinese coals were investigated based on Fourier transform infrared and high-pressure methane adsorption experiments. Four structural parameters calculated by FTIR semi-quantitative method were used to evaluate the chemical characteristics of coals. The impacts of the chemical structural parameters on methane adsorption capacities under different temperature conditions were analyzed systematically. Results show that coal increases its aromaticity with increasing coalification, while aliphatic CH groups in addition to oxygen and hydroxyl groups would be dramatically decreased. With the increasing of vitrinite reflectance, aromaticity and the degree of condensation increases correspondingly, while the chain length present a negative correlations with increasing of vitrinite reflectance. ‘A’ factor peaked in the coal of Ro,max = 1.49% and subsequently decreased in higher rank coals. And, ‘C’ factor shows a saddle type of changing trend for the selected coal rank ranges. There is a positive liner correlation between surface adsorption capacity and aromaticity, and a negative liner correlation between Langmuir pressure and aromaticity. With the degree of condensation increasing, surface adsorption capacity of methane adsorption on the coal shows a rising trend and Langmuir pressure decreases gradually. The effects of chain length on fitting parameters of methane adsorption show that the longer or less branched chain structure is not suitable for methane adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abelmann, K., Kleineidam, S., Knicker, H., Grathwohl, P., Kogel-Knabner, I.: Sorption of HOC in soils with carbonaceous contamination: influence of organic-matter composition. J. Plant Nut. Soil Sci. 168, 293–306 (2005)

    Article  CAS  Google Scholar 

  • Arami-Niya, T.E., Rufford, Z., Zhu: Nitrogen-doped carbon foams synthesized from banana peel and zinc complex template for adsorption of CO2, CH4, and N2. Energy Fuels 30, 7298–7309 (2016)

    Article  CAS  Google Scholar 

  • Bai, B.C., Kim, E.A., Lee, C.W., Lee, Y.S., Im, J.S.: Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption. Appl. Surf. Sci. 353, 158–164 (2015)

    Article  CAS  Google Scholar 

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  • Baysal, M., Yürüm, A., Yıldız, B., Yürüm, Y.: Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. Int. J. Coal Geol. 163, 166–176 (2016)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Chalmers, G.R.L., Bustin, R.M.: On the effects of petrographic composition on coalbed methane sorption. Int. J. Coal Geol. 69, 288–304 (2007)

    Article  CAS  Google Scholar 

  • Chen, Y., Mastalerz, M., Schimmelmann, A.: Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 104, 22–33 (2012)

    Article  CAS  Google Scholar 

  • Chen, Y., Furmann, A., Mastalerz, M.: Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel 116, 538–549 (2014)

    Article  CAS  Google Scholar 

  • Cheng, W., Hu, X., Xie, J., Zhao, Y.: An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. Fuel 210, 826–835 (2017)

    Article  CAS  Google Scholar 

  • Cui, X.J., Bustin, R.M., Dipple, G.: Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83, 293–303 (2004)

    Article  CAS  Google Scholar 

  • Ganz, H., Kalkreuth, W.: Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale. Fuel 66, 708–711 (1987)

    Article  CAS  Google Scholar 

  • Geng, W., Nakajima, T., Takanashi, H., Ohki, A.: Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88, 139–144 (2009)

    Article  CAS  Google Scholar 

  • Green, U., Aizenstat, Z., Gieldmeister, F., Cohen, H.: CO2 adsorption inside the pore structure of different rank coals during low temperature oxidation of open air coal stockpiles. Energy Fuels 25, 4211–4215 (2011)

    Article  CAS  Google Scholar 

  • Hao, S., Wen, J., Yu, X., Chu, W.: Effect of the surface oxygen groups on methane adsorption on coals. Appl. Surf. Sci. 264, 433–442 (2013)

    Article  CAS  Google Scholar 

  • Iglesias, M.J., Jiménez, A., Laggoun-Défarge, F., Suárez-Ruiz, I.: FTIR study of pure vitrains and associated coals. Energy Fuels 9, 458–466 (1995)

    Article  CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013)

    Article  CAS  Google Scholar 

  • Li, M., Zeng, F., Chang, H., Xu, B., Wang, W.: Aggregate structure evolution of low rank coals during pyrolysis by in-situ X-ray diffraction, Int. J. Coal Geol. 116–117 (2013a) 262–269

  • Li, W., Zhu, Y.M., Chen, S.B., Zhou, Y.: Research on the structural characteristics of vitrinite in different coal ranks. Fuel 107, 647–652 (2013b)

    Article  CAS  Google Scholar 

  • Li, Z.K., Wei, X.Y., Yan, H.L., Zong, Z.M.: Insight into the structural features of Zhaotong lignite using multiple techniques. Fuel 153, 176–182 (2015)

    Article  CAS  Google Scholar 

  • Li, Y., Cao, D., Wu, P., Niu, X., Zhang, Y.: Variation in maceral composition and gas content with vitrinite reflectance in bituminous coal of the eastern Ordos basin, China. J. Pet. Sci. Eng. 149, 114–125 (2017)

    Article  CAS  Google Scholar 

  • Lin, R., Ritz, G.P.: Studying individual macerals using i.r. microspectroscopy, and implications on oil versus gas/condensate proneness and “low-rank” generation. Org. Geochem. 20, 695–706 (1993)

    Article  CAS  Google Scholar 

  • Lis, G.P., Mastalerz, M., Schimmelmann, A., Lewan, M.D., Stankiewicz, B.A.: FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Org. Geochem. 36, 1533–1552 (2005)

    Article  CAS  Google Scholar 

  • Luo, J.J., Liu, Y.F., Sun, W.J., Jiang, C.F., Xie, H.P., Chu, W.: Influence of structural parameters on methane adsorption over activated carbon: evaluation by using D–A model. Fuel 123, 241–247 (2014)

    Article  CAS  Google Scholar 

  • Machnikowska, H., Krzton, A., Machnikowski, J.: The characterization of coal macerals by diffuse reflectance infrared spectroscopy. Fuel 81, 245–252 (2002)

    Article  CAS  Google Scholar 

  • Mastalerz, M., Bustin, R.M.: Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada. Int. J. Coal Geol. 32, 55–67 (1996)

    Article  CAS  Google Scholar 

  • Mathews, J.P., Hatcher, P.G., Scaroni, A.W.: Proposed model structures for upper free port and lewiston–stockton vitrinites. Energy Fuels 15, 863–873 (2001)

    Article  CAS  Google Scholar 

  • Meng, Z., Liu, S., Li, G.: Adsorption capacity, adsorption potential and surface free energy of different structure high rank coals. J. Pet. Sci. Eng. 146, 856–865 (2016)

    Article  CAS  Google Scholar 

  • Mohanty, M.M., Pal, B.K.: Sorption behavior of coal for implication in coal bed methane an overview. Int. J. Min. Sci. Tech. 27, 307–314 (2017)

    Article  CAS  Google Scholar 

  • Oikonomopoulos, I.K., Perraki, M., Tougiannidis, N., Perraki, T., Frey, M.J., Antoniadis, P.: A comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses: an example from the Neogene Greek lignite deposits. Int. J. Coal Geol. 115, 1–12 (2013)

    Article  CAS  Google Scholar 

  • Oluwadayo, H., Tobias, F.F., Stephen: Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 35, 5347–5353 (2010)

    Article  Google Scholar 

  • Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W., Davis, A.: Concerning the application of FTIR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Appl. Spectrosc. 35, 475–485 (1981)

    Article  CAS  Google Scholar 

  • Pan, H., Zhao, J., Lin, Q., Cao, J., Liu, F., Zheng, B.: Preparation and characterization of activated carbons from bamboo sawdust and its application for CH4 selectivity adsorption from a CH4/N2 system. Energy Fuels 30, 10730–10738 (2016)

    Article  CAS  Google Scholar 

  • Qi, L.L., Tang, X., Wang, Z.F., Peng, X.S.: Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Tech. 27, 371–377 (2017)

    Article  CAS  Google Scholar 

  • Saikia, B., Boruah, R.K., Gogoi, P.K.: XRD and FT-IR investigations of sub-bituminous Assam coals. Bull. Mater. Sci. 30, 421–426 (2007)

    Article  CAS  Google Scholar 

  • Sakurovs, R., Day, S., Weir, S., Duffy, G.: Temperature dependence of sorption of gases by coals and charcoals. Int. J. Coal Geol. 73, 250–258 (2008)

    Article  CAS  Google Scholar 

  • Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M.: Environmental Organic Chemistry, 2nd edn. Wiley Interscience, New York (2003) NY, USA.

    Google Scholar 

  • Shi, X., Fu, H., Li, Y., Mao, J., Zheng, S., Zhu, D.: Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants. Environ. Toxicol. Chem. 30, 1310–1319 (2011)

    Article  CAS  Google Scholar 

  • Tang, X., Wang, Z., Ripepi, N., Kang, B., Yue, G.: Adsorption affinity of different types of coal: mean isosteric heat of adsorption. Energ. Fuel. 29, 3609–3615 (2015)

    Article  CAS  Google Scholar 

  • Van, N.D., Pugmire, R.J., Solum, M.S., Painter, P.C., Mathews, J.P.: Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals. Int. J. Coal Geol. 76, 290–300 (2008)

    Article  Google Scholar 

  • Walker, R., Mastalerz, M.: Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana: controls on coking. Int. J. Coal Geol. 58, 181–191 (2004)

    Article  CAS  Google Scholar 

  • Wang, F., Cheng, Y., Lu, S., Jin, K., Zhao, W.: Influence of coalification on the pore characteristics of middle-high rank coal. Energy Fuels 28, 5729–5736 (2014)

    Article  CAS  Google Scholar 

  • Zareie, H., Öztaş, N., Gündoǧan, M., Pişkin, E., Yürüm, Y.: Images of demineralized coal surfaces by scanning tunnelling microscopy. Fuel 75, 855–857 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No.51574230) and the Fundamental Research Funds for the Central Universities (No.2014QNA04) are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Li, Q., Yuan, D. et al. Chemical structure of coal surface and its effects on methane adsorption under different temperature conditions. Adsorption 24, 613–628 (2018). https://doi.org/10.1007/s10450-018-9975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9975-9

Keywords

Navigation