, Volume 24, Issue 4, pp 357–369 | Cite as

Microstructure effect of carbon materials on the low-concentration methane adsorption separation from its mixture with nitrogen

  • Donglei Qu
  • Ying Yang
  • Kai Lu
  • Lin Yang
  • Ping LiEmail author
  • Jianguo YuEmail author
  • Ana Mafalda Ribeiro
  • Alirio E. Rodrigues


Due to the weak polarities of CH4 and N2 and their similar physicochemical properties, the microporous adsorbents have a little amount of adsorption capacity for the low-concentration methane, and the separation of CH4/N2 is also very difficult to accomplish by the adsorption-based process. Microstructure of carbon materials plays a decisive role for CH4/N2 effective separation and CH4 enrichment from the low-concentration methane gas mixed with nitrogen. This work focuses on the research of carbon material microstructure, including the selection of raw material or precursor for the carbon skeleton formation, effect of the specific surface area of carbon material on the low-concentration methane adsorption amount, the relationship between micropore size distribution of carbon material and CH4/N2 adsorption separation mechanism, and effect of different activator on the weak polar methane adsorption capacity. According to the microstructure analysis, the granular activated carbons (GACs) are prepared in lab-scale with the optimal preparation conditions, raw coconut shell carbonization for 2 h at 1073 K under N2 atmosphere and KOH activation for 1 h at 1073 K under N2 atmosphere with the KOH to carbonized material ratio of 3:1. And then, the home-made GACs (about 200 g) were packed in a column. A four-step one-bed vacuum pressure swing adsorption (VPSA) process was adopted to evaluate the low-concentration methane adsorption separation performance from its mixture with nitrogen.


Methane enrichment CH4/N2 separation Carbon microstructure VPSA process Unconventional natural gas 



The authors wish to acknowledge National Nature Science Foundation of China (Grant U1610102, 21506063), the International S&T Cooperation Program of China (Grant 2016YFE0132500, 2015DFG42220), POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia.

Supplementary material

10450_2018_9951_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 KB)


  1. Abdel-Ghani, N.T., El-Chaghaby, G.A., Elgammal, M.H., Rawash, E.S.A.: Optimizing the preparation conditions of activated carbons from olive cake using KOH activation. New Carbon Mater. 31(5), 492–500 (2016)CrossRefGoogle Scholar
  2. Anna, H.R.S., Barreto Jr, A.G., Tavares, F.W., de Souza Jr, M.B.: Machine learning model and optimization of a PSA unit for methane-nitrogen separation. Comput. Chem. Eng. 104, 377–391 (2017)CrossRefGoogle Scholar
  3. Cazetta, A.L., Vargas, A.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C., Almeida, V.C.: NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174(1), 117–125 (2011)CrossRefGoogle Scholar
  4. Cheng, S., Zhang, L., Xia, H., Peng, J., Zhang, S., Wang, S.: Preparation of high specific surface area activated carbon from walnut shells by microwave-induced KOH activation. J. Porous Mater. 22(6), 1–11 (2015)CrossRefGoogle Scholar
  5. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., Moreno-Castilla, C.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012)CrossRefPubMedGoogle Scholar
  6. Fu, Q., Yan, H., Shen, Y., Qin, Y., Zhang, D., Zhou, Y.: Optimal design and control of pressure swing adsorption process for N2/CH4 separation. J. Clean. Prod. 170, 704–717 (2018)CrossRefGoogle Scholar
  7. Gregg, S.J., Sing, K.S.W., Salzberg, H.W.: Adsorption, surface area, and porosity. Academic Press, London (1982)Google Scholar
  8. Hu, J., Sun, T., Ren, X., Wang, S.: HF-assisted synthesis of ultra-microporous [Mg3(OOCH)6] frameworks for selective adsorption of CH4 over N2. Microporous Mesoporous Mater. 204, 73–80 (2015)CrossRefGoogle Scholar
  9. Jayaraman, A., Yang, R.T., Chinn, D., Munson, C.L.: Tailored clinoptilolites for nitrogen/methane separation. Chem. Eng. Sci. 59(12), 2407–2417 (2004)CrossRefGoogle Scholar
  10. Khunpolgrang, J., Yosantea, S., Kongnoo, A., Phalakornkule, C.: Alternative PSA process cycle with combined vacuum regeneration and nitrogen purging for CH4/CO2 separation. Fuel 140, 171–177 (2015)CrossRefGoogle Scholar
  11. Li, B., Wen, H., Wang, H., Wu, H., Yildirim, T., Zhou, W., Chen, B.: Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy Environ. Sci. 8(8), 2504–2511 (2015)CrossRefGoogle Scholar
  12. Li, S., Han, K., Li, J., Li, M., Lu, C.: Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300 (2017)CrossRefGoogle Scholar
  13. Majumdar, B., Bhadra, S.J., Marathe, R.P., Farooq, S.: Adsorption and diffusion of methane and nitrogen in barium exchanged ETS-4. Ind. Eng. Chem. Res. 50(5), 3021–3034 (2011)CrossRefGoogle Scholar
  14. Munusamy, K., Sethia, G., Patil, D.V., Rallapalli, P.B.S., Somani, R.S., Bajaj, H.C.: Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies. Chem. Eng. J. s195–196(7), 359–368 (2012)CrossRefGoogle Scholar
  15. Ning, X., Koros, W.J.: Carbon molecular sieve membranes derived from Matrimid®; polyimide for nitrogen/methane separation. Carbon 66, 511–522 (2014)CrossRefGoogle Scholar
  16. Pillai, R.S., Peter, S.A., Jasra, R.V.: Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous Mesoporous Mater. 113(1), 268–276 (2008)CrossRefGoogle Scholar
  17. Rufford, T.E., Watson, G.C.Y., Saleman, T.L., Hofman, P.S., Jensen, N.K., May, E.F.: Adsorption equilibria and kinetics of methane + nitrogen mixtures on the activated carbon Norit RB3. Ind. Eng. Chem. Res. 52(39), 14270–14281 (2013)CrossRefGoogle Scholar
  18. Saleman, T.L.H., Watson, G.C.Y., Rufford, T.E., Hofman, P.S., Chan, K.I., May, E.F.: Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243-303K and pressures to 900 kPa using a dynamic column breakthrough apparatus. Adsorption 19(6), 1165–1180 (2013)CrossRefGoogle Scholar
  19. Saleman, T.L., Gang, L., Rufford, T.E., Stanwix, P.L., Chan, K.I., Huang, S.H., May, E.F.: Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. Chem. Eng. J. 281, 739–748 (2015)CrossRefGoogle Scholar
  20. Sethia, G., Pillai, R.S., Dangi, G.P., Somani, R.S., Bajaj, H.C., Jasra, R.V.: Sorption of methane, nitrogen, oxygen, and argon in ZSM-5 with different SiO2/Al2O3 ratios: grand canonical Monte Carlo simulation and volumetric measurements. Ind. Eng. Chem. Res. 29, 2353–2362 (2010)CrossRefGoogle Scholar
  21. Silva, J.A.C., Ferreira, A., Mendes, P.A.P., Cunha, A.F., Gleichmann, K., Rodrigues, A.E.: Adsorption equilibrium and dynamics of fixed bed adsorption of CH4/N2 in binderless beads of 5A zeolite. Ind. Eng. Chem. Res. 54(24), 6390–6399 (2015)CrossRefGoogle Scholar
  22. Wu, Y.-J., Yang, Y., Kong, X.-M., Li, P., Yu, J.-G., Ribeiro, A.M., Rodrigues, A.E.: Adsorption of pure and binary CO2, CH4, and N2 gas components on activated carbon beads. J. Chem. Eng. Data 60(9), 2684–2693 (2015)CrossRefGoogle Scholar
  23. Yang, L.: Preparation of high efficient coconut activated carbon and adsorption separation performance of CH4 and N2. Master, East China University of Science and Technology, Shanghai (2017)Google Scholar
  24. Yang, Y., Ribeiro, A.M., Li, P., Yu, J.G., Rodrigues, A.E.: Adsorption equilibrium and kinetics of methane and nitrogen on carbon molecular sieve. Ind. Eng. Chem. Res. 53(43), 16840–16850 (2014)CrossRefGoogle Scholar
  25. Yang, B., Xu, E.L., Li, M.: Purification of coal mine methane on carbon molecular sieve by vacuum pressure swing adsorption. Sep. Sci. Technol. 51(6), 909–916 (2016a)CrossRefGoogle Scholar
  26. Yang, Y., Wu, Y., Liu, H., Ribeiro, A.M., Li, P., Yu, J., Rodrigues, A.E.: Enrichment of ventilation air methane by adsorption with displacement chromatography technology: experiment and numerical simulation. Chem. Eng. Sci. 149, 215–228 (2016b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Donglei Qu
    • 1
  • Ying Yang
    • 1
  • Kai Lu
    • 1
  • Lin Yang
    • 1
  • Ping Li
    • 1
    Email author
  • Jianguo Yu
    • 1
    Email author
  • Ana Mafalda Ribeiro
    • 2
  • Alirio E. Rodrigues
    • 2
  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Laboratory of Separation and Reaction Engineering (LSRE), Associated Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations