Advertisement

Adsorption

, Volume 24, Issue 4, pp 393–402 | Cite as

Theoretical insights into the mechanism of CO2 physisorption on Al–N ring doped on the carbon nanotube: a DFT study

  • A. S. Ghasemi
  • F. Ashrafi
  • H. Pezeshki
  • M. Molla
  • M. Rokni
Article

Abstract

Carbon nanotubes are the most important nanotechnology combinations, one of their most important applications being in the science of nano-electronic segments. In the present study, CO2 molecule interaction with the outer surface of Zigzag (5,0) and Armchair (5,5) carbon nanotubes with specified and optimized lengths and diameters has investigated. Significance of this study is injection of insoluble carbon dioxide gas expanded in the reservoir, causing fluid movement towards the wellhead. Therefore, theoretical approaches have used to investigate the adsorption of CO2 on single-wall carbon nanotubes, identify the adsorption structure and the attached carbon-to-gas configuration, and to calculate the parameters such as energy gap in carbon-gas nanotube structures that can help to identify carbon-gas nanotube complex stability. Results revealed that CO2 molecule reaction with nanotube surface generates diverse adsorption structures. The best CO2 gas adsorption has obtained on the surface of carbon nanotubes (5,5) doped with the Al–Nitride ring.

Keywords

DFT Energy gap Carbon nanotubes Homo–Lumo 

References

  1. Ahmadi Peyghan, A., Hadipour, N.L., Bagheri, Z.: Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J. Phys. Chem C 117, 2427–2432 (2013)CrossRefGoogle Scholar
  2. Al-Sunaidi, A., Al-Saadi, A.A.: First principle calculations of the chemisorption of SOx on doped carbon nanotubes and graphene. Chem. Phys. Lett. 621, 65–70 (2015)CrossRefGoogle Scholar
  3. Ansari, R., Mirnezhad, M., Sadeghi, F.: Elastic properties of chiral carbon nanotubes under oxygen adsorption. Physica E 70, 129–134 (2015)CrossRefGoogle Scholar
  4. Ashrafi, F., Ghasemi, A.S.: Density functional theory (DFT) study of O2, N2 Adsorptions on H-capped (5, 0) single–walled carbon nanotube (CNT). J. Chem. 9, 2134–2140 (2012)Google Scholar
  5. Baei, M.T., et al.: BN Nanotube serving as a gas chemical sensor for N2. J. Cluster Sci. 27, 1081–1096 (2016)CrossRefGoogle Scholar
  6. Chang, Y.-H., Lin, K.-F.: Physisorption of ionic salts to carbon nanotubes for enhancing dispersion and thermomechanical properties of carbon nanotube-filled epoxy resins. Compos. Sci. Technol. 90, 174–179 (2014)CrossRefGoogle Scholar
  7. Chukwuocha, E.O., Onyeaju, M.C., Harry, T.S.: Theoretical studies on the effect of confinement on quantum dots using the brus equation. World J. Condens. Matter Phys. 2, 96 (2012)CrossRefGoogle Scholar
  8. Frisch, M., et al.: Gaussian 03. Gaussian. Inc., Wallingford (2004)Google Scholar
  9. Ghasemi, A.S., Binaeian, E., Tayebi, H.: CO2 adsorption on the surface and open ended of single wall carbon nanotubes (SWCNTs): a comparative study. Int. J. Nano Dimension 7, 247–253 (2016)Google Scholar
  10. Gholamzadeh, M.A., Abdali loraki, M., Chahardah cherik, M., Hashemi, P.: Iran 4th Conference of Geology and the Environment, (2009)Google Scholar
  11. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)CrossRefGoogle Scholar
  12. Jauris, I.M., et al.: Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes: a first principle approach. Comput. Theoret. Chem. 1076, 42–50 (2016)CrossRefGoogle Scholar
  13. Javan, M.B., et al.: Ga-doped and antisite double defects enhance the sensitivity of boron nitride nanotubes towards Soman and Chlorosoman. Appl. Surf. Sci. 411, 1–10 (2017)CrossRefGoogle Scholar
  14. Jiang, Y., Lan, C.: Low temperature synthesis of multiwall carbon nanotubes from carbonaceous solid prepared by sol–gel autocombustion. Mater. Lett. 157, 269–272 (2015)CrossRefGoogle Scholar
  15. Jiao, Y., et al.: A density functional theory study of CO2 and N2 adsorption on aluminium nitride single walled nanotubes. J. Mater. Chem. 20, 10426–10430 (2010)CrossRefGoogle Scholar
  16. Kong, X., Ohadi, M.: Applications of micro and nano technologies in the oil and gas industry-overview of the recent progress. in Abu Dhabi international petroleum exhibition and conference. Society of Petroleum Engineers, (2010)Google Scholar
  17. Koopmans, T.: Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1, 104–113 (1934)CrossRefGoogle Scholar
  18. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  19. Machado, F.M., et al.: Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 192, 1122–1131 (2011)CrossRefPubMedGoogle Scholar
  20. Machado, F.M., et al.: Adsorption of reactive blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys. Chem. Chem. Phys. 14, 11139–11153 (2012)CrossRefPubMedGoogle Scholar
  21. Mirzaei, M., Yousefi, M.: Computational studies of the purine-functionalized graphene sheets. Superlatt. Microstruct. 52, 612–617 (2012)CrossRefGoogle Scholar
  22. Modeler, N.: JCrystalSoft, 2004–2005Google Scholar
  23. Molla, M., Behbahani, T.J.: Adsorption of N2, O2, CO, and CO2 on open ends and surface of single wall carbon nano-tubes: a computational nuclear magnetic resonance and nuclear quadrupole resonance study. J. Mol. Liq. 222, 717–732 (2016)CrossRefGoogle Scholar
  24. Parr, R.G., Szentpaly, L.V., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  25. Prola, L.D., et al.: Adsorption of direct blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J. Environ. Manag. 130, 166–175 (2013)CrossRefGoogle Scholar
  26. Reisi-Vanani, A., Faghih, S.: Computational study of the molecular hydrogen physisorption in some of the corannulene derivatives as a carbon nanostructure. J. Saudi Chem. Soc. 18, 666–673 (2014)CrossRefGoogle Scholar
  27. Shaheen, H.A., Marwani, H.M., Soliman, E.M.: Selective adsorption of gold ions from complex system using oxidized multi-walled carbon nanotubes. J. Mol. Liq. 212, 480–486 (2015)CrossRefGoogle Scholar
  28. Shokry, S., et al.: Synthesis and characterization of polyurethane based on hydroxyl terminated polybutadiene and reinforced by carbon nanotubes. Egypt. J. Pet. 24, 145–154 (2015)CrossRefGoogle Scholar
  29. Soltani, A., et al.: The study of SCN—adsorption on B12N12 and B16N16 nano-cages. Superlatt. Microstruct. 75, 716–724 (2014)CrossRefGoogle Scholar
  30. Soltani, A., Bezi Javan, M., Hoseininezhad-Namin, M.S., Tajabor, N., Tazikeh Lemeskie, E., Pourarian, F.: Interaction of hydrogen with Pd- and co-decorated C24 fullerenes: density functional theory study. Synth. Met. 234, 1–8 (2017)CrossRefGoogle Scholar
  31. Soltani, A., Bezi Javan, M., Baei, M.T., Azmoodeh, Z.: Adsorption of chemical warfare agents over C24 fullerene: Effects of decoration of cobalt. J. Alloy Compd. 735, 2148–2161 (2018)CrossRefGoogle Scholar
  32. Tournus, F., Charlier, J.-C.: Ab initio study of benzene adsorption on carbon nanotubes. Phys, Rev. B 71, 165421 (2005)CrossRefGoogle Scholar
  33. Yan, T., et al.: Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes. Int. J. Refrig. 46, 165–172 (2014)CrossRefGoogle Scholar
  34. Yoosefian, M., et al.: A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube. Appl. Surf. Sci. 349, 864–869 (2015)CrossRefGoogle Scholar
  35. Zhang, A.-D., Wang, D.-L., Hou, D.-Y.: Theoretical study of chemisorption of hydrogen atoms on the sidewalls of armchair single-walled carbon nanotubes with Stone–Wales defect. Comput. Theoret. Chem. 999, 121–125 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Ghasemi
    • 1
  • F. Ashrafi
    • 1
  • H. Pezeshki
    • 1
  • M. Molla
    • 1
  • M. Rokni
    • 1
  1. 1.Department of ChemistryPayame Noor University (PNU)TehranIran

Personalised recommendations