Skip to main content
Log in

Transesterification of propylene glycol methyl ether by reactive simulated moving bed chromatography using homogeneous catalyst

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A reactive chromatography process was investigated for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) using a homogeneous catalyst, a sodium alkoxide. In the proposed process, fresh catalyst is supplied with desorbent, which allows independent optimization of the adsorption properties of the stationary phase. Deactivation of catalytic activity can be avoided, which had been found to be the bottleneck in our previous study for heterogeneous catalysis. To model and optimize this process, a series of batch reaction experiments, and pulse injection tests with a chromatographic column with and without reaction were carried out. From the experimental data, equilibrium and kinetic parameters were estimated using the inverse method. Using this model, a simulated moving bed reactor was designed that achieves a conversion of 95% using the homogeneous catalysis concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agrawal, G., Kawajiri, Y.: Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization. J Chromatogr A. 1238, 105–113 (2012)

    Article  CAS  Google Scholar 

  • Agrawal, G., Oh, J., Sreedhar, B., Tie, S., Donaldson, M.E., Frank, T.C., Schultz, A.K., Bommarius, A.S., Kawajiri, Y.: Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester. J. Chromatogr. A. 1360, 196–208 (2014)

    Article  CAS  Google Scholar 

  • Co, C.E.T., Tan, M.C., Diamante, J.A.R., Yan, L.R.C., Tan, R.R., Razon, L.F.: Internal mass-transfer limitations on the transesterification of coconut oil using an anionic ion exchange resin in a packed bed reactor. Catal. Today. 174, 54–58 (2011)

    Article  CAS  Google Scholar 

  • da Silva, E.A.B., Pedruzzi, I., Rodrigues, A.E.: Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol. Adsorption. 17, 145–158 (2011)

    Article  Google Scholar 

  • Demirbas, A.: Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 49, 125–130 (2008)

    Article  CAS  Google Scholar 

  • Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical-programming. Manag. Sci. 36, 519–554 (1990)

    Article  Google Scholar 

  • Geier, D., Soper, J.: US Patent US7828978 B2 (2007)

  • Gyani, V.C., Mahajani, S.: Reactive chromatography for the synthesis of 2-ethylhexyl acetate. Sep. Sci. Technol. 43, 2245–2268 (2008)

    Article  CAS  Google Scholar 

  • Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  Google Scholar 

  • He, B., Ren, Y., Cheng, Y., Li, J.: Deactivation and in situ regeneration of anion exchange resin in the continuous transesterification for biodiesel production. Energy Fuels. 26, 3897–3902 (2012)

    Article  CAS  Google Scholar 

  • Indlekofer, M., Brotz, F., Bauer, A., Reuss, M.: Stereoselective bioconversions in continuously operated fixed bed reactors: Modeling and process optimization. Biotechnol. Bioeng. 52, 459–471 (1996)

    Article  CAS  Google Scholar 

  • Jaya, N., Selvan, B.K., Vennison, S.J.: Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst. Ecotoxicol. Environ. Safe. 121, 3–9 (2015)

    Article  CAS  Google Scholar 

  • Kawajiri, Y., Biegler, L.T.: Comparison of configurations of a four-column simulated moving bed process by multi-objective optimization. Adsorption. 14, 433–442 (2008)

    Article  CAS  Google Scholar 

  • Kawase, M., Inoue, Y., Araki, T., Hashimoto, K.: The simulated moving-bed reactor for production of bisphenol A. Catal. Today. 48, 199–209 (1999)

    Article  CAS  Google Scholar 

  • Kim, M., Salley, S.O., Ng, K.Y.S.: Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst. Energy Fuels. 22, 3594–3599 (2008)

    Article  CAS  Google Scholar 

  • Kitagawa, N., Yonemoto, T.: Japanese Patent 2016-059833A (2016)

  • Kloppenburg, E., Gilles, E.D.: A new concept for operating simulated moving-bed processes. Chem. Eng. Technol. 22, 813–817 (1999)

    Article  CAS  Google Scholar 

  • Lee, D.W., Park, Y.M., Lee, K.Y.: Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal Surv. Asia. 13, 63–77 (2009)

    Article  CAS  Google Scholar 

  • Lode, F., Houmard, M., Migliorini, C., Mazzotti, M., Morbidelli, M.: Continuous reactive chromatography. Chem. Eng. Sci. 56, 269–291 (2001)

    Article  CAS  Google Scholar 

  • Mai, P.T., Vu, T.D., Mai, K.X., Seidel-Morgenstern, A.: Analysis of heterogeneously catalyzed ester hydrolysis performed in a chromatographic reactor and in a reaction calorimeter. Ind. Eng. Chem. Res. 43, 4691–4702 (2004)

    Article  CAS  Google Scholar 

  • Meher, L.C., Sagar, D.V., Naik, S.N.: Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268 (2006)

    Article  CAS  Google Scholar 

  • Minceva, M., Gomes, P.S., Meshko, V., Rodrigues, A.E.: Simulated moving bed reactor for isomerization and separation of p-xylene. Chem. Eng. J. 140, 305–323 (2008)

    Article  CAS  Google Scholar 

  • Oh, J., Agrawal, G., Sreedhar, B., Donaldson, M.E., Schultz, A.K., Frank, T.C., Bommarius, A.S., Kawajiri, Y.: Conversion improvement for catalytic synthesis of propylene glycol methyl ether acetate by reactive chromatography: experiments and parameter estimation. Chem. Eng. J. 259, 397–409 (2015)

    Article  CAS  Google Scholar 

  • Oh, J., Sreedhar, B., Donaldson, M.E., Frank, T.C., Schultz, A.K., Bommarius, A.S., Kawajiri, Y.: Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst. J Chromatogr A. 1466, 84–95 (2016)

    Article  CAS  Google Scholar 

  • Patel, D., Saha, B.: Esterification of acetic acid with n-hexanol in batch and continuous chromatographic reactors using a gelular ion-exchange resin as a catalyst. Ind. Eng. Chem. Res. 51, 11965–11974 (2012)

    Article  CAS  Google Scholar 

  • Paterson, G., Issariyakul, T., Baroi, C., Bassi, A., Dalai, A.: Ion-exchange resins as catalysts in transesterification of triolein. Catal. Today. 212, 157–163 (2013)

    Article  CAS  Google Scholar 

  • Rodrigues, A.E., Pereira, C.S.M., Santos, J.C.: Chromatographic reactors. Chem. Eng. Technol. 35, 1171–1183 (2012)

    Article  CAS  Google Scholar 

  • Schmidt-Traub, H., Schulte, M., Seidel-Morgenstern, A.: Preparative Chromatography, 2nd edn. Wiley, Weinheim (2012)

    Book  Google Scholar 

  • Schuchardt, U., Sercheli, R., Vargas, R.M.: Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9, 199–210 (1998)

    Article  CAS  Google Scholar 

  • Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T.: Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Biores. Technol. 98, 416–421 (2007)

    Article  CAS  Google Scholar 

  • Shibasaki-Kitakawa, N., Tsuji, T., Kubo, M., Yonemoto, T.: Biodiesel production from waste cooking oil using anion-exchange resin as both catalyst and adsorbent. BioEnergy Res. 4, 287–293 (2011)

    Article  Google Scholar 

  • Ströhlein, G., Assunção, Y., Dube, N., Bardow, A., Mazzotti, M., Morbidelli, M.: Esterification of acrylic acid with methanol by reactive chromatography: Experiments and simulations. Chem. Eng. Sci. 61, 5296–5306 (2006)

    Article  Google Scholar 

  • Talukder, M.M.R., Beatrice, K.L.M., Song, O.P., Puah, S., Wu, J.C., Won, C.J., Chow, Y.: Improved method for efficient production of biodiesel from palm oil. Energy Fuels. 22, 141–144 (2008)

    Article  CAS  Google Scholar 

  • Tapur, F.N., Bhanger, M.I., Rahman, A.U., Memon, G.Z.: Application of factorial design in optimization of anion exchange resin based methylation of vegetable oil and fats. Innov. Food Sci. Emerg. 9, 608–613 (2008)

    Article  Google Scholar 

  • Tie, S., Sreedhar, B., Agrawal, G., Oh, J.M., Donaldson, M., Frank, T., Schultz, A., Bommarius, A., Kawajiri, Y.: Model-based design and experimental validation of simulated moving bed reactor for production of glycol ether ester. Chem. Eng. J. 301, 188–199 (2016)

    Article  CAS  Google Scholar 

  • Tikhonov, A.N., Leonov, A.S., Yagola, A.G.: Nonlinear Ill-Posed Problems. World Congress of Nonlinear Analysis ‘92, vol. I, pp. 505–511. Walter de Gruyter & Co., Tampa (1995)

    Google Scholar 

  • Vu, T.D., Seidel-Morgenstern, A.: Quantifying temperature and flow rate effects on the performance of a fixed-bed chromatographic reactor. J Chromatogr A. 1218, 8097–8109 (2011)

    Article  CAS  Google Scholar 

  • Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  Google Scholar 

  • Yonemoto, T., Kitagawa, N., Toda, T.: Japanese Patent 2006-104316 (2006)

  • Yonemoto, T., Kitagawa, N., Nakagawa, Y., Nakayama, M.: Japanese Patent 2010-195938 (2010)

Download references

Acknowledgements

Financial support from The Dow Chemical Company is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kawajiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J., Sreedhar, B., Donaldson, M.E. et al. Transesterification of propylene glycol methyl ether by reactive simulated moving bed chromatography using homogeneous catalyst. Adsorption 24, 309–324 (2018). https://doi.org/10.1007/s10450-018-9941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9941-6

Keywords

Navigation