Adsorption

pp 1–12 | Cite as

Characterization of hydroxylated amorphous silica: a numerical approach

  • Nicholas W. Suek
  • Maxime C. Guillaume
  • Jean-Yves P. Delannoy
  • Frederik Tielens
Article
  • 22 Downloads

Abstract

Hydroxylated amorphous silica nanoparticles were modeled using a combination of computational techniques at different levels of length scales from Ångström to hundreds of nanometers. Using quantum chemical ab initio methods, force field Monte Carlo methods, reactive force field simulations, and numerical model calculations, including BET theory calculations it was possible to describe and model the physico-chemical properties of hydroxylated amorphous silica. The results are compared with experimental data and found to be in good agreement with the theory, confirming the reliability of the computational method and the silica model structure.

Keywords

Silica Modeling Adsorption BET TEM 

Notes

Acknowledgements

The authors thank Laurent Guy and Marc Airiau for useful discussions. Support from the IT team at Solvay Lyon is greatly appreciated.

References

  1. Adamson, A., Gast, A.: Physical Chemistry of Surfaces, vol. 4. Wiley, New York (1997)Google Scholar
  2. Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162(3), 165 (1989)CrossRefGoogle Scholar
  3. Bae, Y.S., Yazaydın, A.O., Snurr, R.Q.: Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 26(8), 5475 (2010)CrossRefGoogle Scholar
  4. Bakaev, V., Steele, W.: On the computer simulation of a hydrophobic vitreous silica surface. J. Chem. Phys. 111(21), 9803 (1999)CrossRefGoogle Scholar
  5. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309 (1938)CrossRefGoogle Scholar
  6. Bueche, F.: Mullins effect and rubber-filler interaction. J. Appl. Polym. Sci. 5(15), 271 (1961)CrossRefGoogle Scholar
  7. Chai, J., Liu, S., Yang, X.: Molecular dynamics simulation of wetting on modified amorphous silica surface. Appl. Surf. Sci. 255(22), 9078 (2009)CrossRefGoogle Scholar
  8. Coasne, B., Hung, F.R., Pellenq, R.J.M., Siperstein, F.R., Gubbins, K.E.: Adsorption of simple gases in MCM-41 materials: the role of surface roughness. Langmuir 22, 194 (2006)CrossRefGoogle Scholar
  9. Comas-Vives, A.: Amorphous SiO2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Phys. Chem. Chem. Phys. 18(10), 7475 (2016)CrossRefGoogle Scholar
  10. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179 (1995)CrossRefGoogle Scholar
  11. Cruz-Chu, E.R., Aksimentiev, A., Schulten, K.: Water-silica force field for simulating nanodevices. J. Phys. Chem. B 110(43), 21497 (2006)CrossRefGoogle Scholar
  12. Dequidt, A., Long, D., Sotta, P., Sanséau, O.: Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations. Eur. Phys. J. E 35(7), 1 (2012)CrossRefGoogle Scholar
  13. Do, D., Do, H.: Effects of potential models in the vapor-liquid equilibria and adsorption of simple gases on graphitized thermal carbon black. Fluid Phase equilib. 236(1), 169 (2005)CrossRefGoogle Scholar
  14. Ewing, C.S., Bhavsar, S., Veser, G., McCarthy, J.J., Johnson, J.K.: Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation. Langmuir 30(18), 5133 (2014)CrossRefGoogle Scholar
  15. Fogarty, J., Aktulga, H., Grama, A., van Duin, A., Pandit, S.: A reactive molecular dynamics simulation of the silica-water interface. J. Chem. Phys. 132, 174704 (2010)CrossRefGoogle Scholar
  16. Folliet, N., Roiland, C., Begu, S., Aubert, A., Mineva, T., Goursot, A., Selvraj, K., Duma, L., Tielens, F.: Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations. J. Am. Chem. Soc. 133, 16815 (2011)CrossRefGoogle Scholar
  17. Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.F., Tielens, F.: A molecular picture of the adsorption of glycine in mesoporous silica through NMR experiments combined with DFT-D calculations. J. Phys. Chem. C 117, 4104 (2013)CrossRefGoogle Scholar
  18. Gierada, M., Petit, I., Handzlik, J., Tielens, F.: Hydration in silica based mesoporous materials: a DFT model. Phys. Chem. Chem. Phys. 18(48), 32962 (2016)CrossRefGoogle Scholar
  19. Girard, S., Mellot-Draznieks, C., Férey, G., Pullumbi, P.: Molecular modeling: a complement to experiment for designing porous materials used in separation technologies by adsorption. Stud. Surf. Sci. Catal. 142, 1907 (2002)CrossRefGoogle Scholar
  20. Grimus, W.: 100th anniversary of the Sackur-Tetrode equation. Annalen der Physik 525, 3 (2013)CrossRefGoogle Scholar
  21. Guesmi, H., Tielens, F.: Investigation of the doping effect of Ti on supported chromium oxide species on silica. J. Phys. Chem. C 116, 994 (2012)CrossRefGoogle Scholar
  22. Guesmi, H., Grybos, R., Handzlik, J., Tielens, F.: Characterization of tungsten monomeric oxide species supported on hydroxylated silica; a DFT study. RSC Adv. 6(45), 39424 (2016)CrossRefGoogle Scholar
  23. Haase, F., Ahlrichs, R.: Semi-direct MP2 gradient evaluation on workstation computers: the MPGRAD program. J. Comput. Chem. 14, 907 (1993)CrossRefGoogle Scholar
  24. Handzlik, J., Grybos, R., Tielens, F.: Structure of monomeric chromium(VI) oxide species supported on silica: periodic and cluster DFT studies. J. Phys. Chem. C 117, 8138 (2013)CrossRefGoogle Scholar
  25. Handzlik, J., Grybos, R., Tielens, F.: Isolated chromium(VI) oxide species supported on Al-modified silica: a molecular description. J. Phys. Chem. C 120(31), 17594 (2016)CrossRefGoogle Scholar
  26. Heinrich, G., Klüppel, M., Vilgis, T.: Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 6(3), 195 (2002)CrossRefGoogle Scholar
  27. Herdes, C., Russo, P.A., Ribeiro Carrott, M.M.L., Carrott, P.J.: Nitrogen adsorption studies on non-porous silica: the annealing effect over surface non-bridging oxygen atoms. Adsorpt. Sci. Technol. 29, 357 (2011)CrossRefGoogle Scholar
  28. Houndonougbo, Y., Signer, C., He, N., Morris, W., Furukawa, H., Ray, K.G., Olmsted, D.L., Asta, M., Laird, B.B., Yaghi, O.M.: A combined experimental computational investigation of methane adsorption and selectivity in a series of isoreticular zeolitic imidazolate frameworks. J. Phys. Chem. C 117, 10326 (2013)CrossRefGoogle Scholar
  29. Humphrey, W., Dalke, A., Schulten, K.: VDM: visual molecular dynamics. J. Mol. Graphics 14(1), 33 (1996)CrossRefGoogle Scholar
  30. Islam, M., Costa, D., Calatayud, M., Tielens, F.: Characterization of supported vanadium oxide species on silica: a periodic DFT investigation. J. Phys. Chem. C 113, 10740 (2009)CrossRefGoogle Scholar
  31. Kraus, G.: Reinforcement of elastomers by carbon black. Rubber Chem. Technol. 51, 297 (1978)CrossRefGoogle Scholar
  32. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods: XX: a basis set for correlated wave functions. J. Chem. Phys. 72(1), 650 (1980)CrossRefGoogle Scholar
  33. Lorenz, C.D., Webb, E.B., Stevens, M.J., Chandross, M., Grest, G.S.: Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2: frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO 2. Tribol. Lett. 19(2), 93 (2005)CrossRefGoogle Scholar
  34. Martin, M.G.: MCCCS towhee: a tool for Monte Carlo molecular simulation. Mol. Simul. 39, 1212 (2013)CrossRefGoogle Scholar
  35. Martin, M.G., Frischknecht, A.L.: Using arbitrary trial distributions to improve intramolecular sampling in configurational-bias Monte Carlo. Mol. Phys. 104(15), 2439 (2006)CrossRefGoogle Scholar
  36. Merabia, M., Sotta, P., Long, D.: A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects. Macromolecules 41, 8252–8266 (2008)CrossRefGoogle Scholar
  37. Michels, A., Wijker, H., Wijker, H.: Isotherms of argon between 0 C and 150 C and pressures up to 2900 atmospheres. Physica 15(7), 627 (1949)CrossRefGoogle Scholar
  38. Norman, G., Filinov, V.: Investigations of phase transitions by a Monte-Carlo method. High Temp. 7(2), 216 (1969)Google Scholar
  39. Papon, A., Merabia, S., Guy, L., Lequeux, F., Montes, H., Sotta, P., Long, D.R.: Unique nonlinear behavior of nano-filled elastomers: from the onset of strain softening to large amplitude shear deformations. Macromolecules 45(6), 2891 (2012)CrossRefGoogle Scholar
  40. Payne, A.R.: The dynamic properties of carbon black loaded natural rubber vulcanizates: part II. J. Appl. Polym. Sci. 6(21), 368 (1962)CrossRefGoogle Scholar
  41. Payne, A.: Dynamic properties of heat-treated butyl vulcanizates. J. Appl. Polym. Sci. 7(3), 873 (1963)CrossRefGoogle Scholar
  42. Payne, A.: A note on the conductivity and modulus of carbon black-loaded rubbers. J. Appl. Polym. Sci. 9(3), 1073 (1965)CrossRefGoogle Scholar
  43. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)CrossRefGoogle Scholar
  44. Potoff, J.J., Siepmann, J.I.: Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47(7), 1676 (2001)CrossRefGoogle Scholar
  45. Rahaman, O., van Duin, A.C., Goddard III, W.A., Doren, D.J.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Phys. Chem. B 115(2), 249 (2010)CrossRefGoogle Scholar
  46. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 160, 49 (2007)CrossRefGoogle Scholar
  47. Tielens, F., Geerlings, P.: An ab initio study of adsorption related properties of diatomic molecules in zeolites. J. Mol. Catal. A 166(1), 175 (2001)CrossRefGoogle Scholar
  48. Tielens, F., Geerlings, P.: Henry constants predicted using multipole expansion for the interaction energies. Int. J. Quantum Chem. 84(1), 58 (2001)CrossRefGoogle Scholar
  49. Tielens, F., Geerlings, P.: Adsorption energy surfaces in faujasite type zeolites. Chem. Phys. Lett. 354(5), 474 (2002)CrossRefGoogle Scholar
  50. Tielens, F., Langenaeker, W., Ocakoglu, A.R., Geerlings, P.: Quantum chemical calculation of Henry constants of diatomic molecules in faujasite-type zeolites. J. Comput. Chem. 21(11), 909 (2000)CrossRefGoogle Scholar
  51. Tielens, F., Gervais, C., Lambert, J.F., Mauri, F., Costa, D.: Ab initio study of the hydroxylated surface of amorphous silica: a representative model. Chem. Mater. 20(10), 3336 (2008)CrossRefGoogle Scholar
  52. Tielens, F., Folliet, N., Bondaz, L., Etemovic, S., Babonneau, F., Gervais, C., Azais, T.: A molecular picture of the adsorption of ibuprofen and benzoic acid on hydrated amorphous silica through DFT-D calculations combined with solid state NMR experiments. J. Phys. Chem. C 121, 17339–17347 (2017)CrossRefGoogle Scholar
  53. Tranca, D.C., Wojtaszek-Gurdak, A., Ziolek, M., Tielens, F.: Supported and inserted monomeric niobium oxide species on/in silica: a molecular picture. Phys. Chem. Chem. Phys. 17(34), 22402 (2015)CrossRefGoogle Scholar
  54. TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com
  55. Ugliengo, P., Sodupe, M., Musso, F., Bush, I., Orlando, R., Dovesi, R.: Realistic Models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations. Adv. Mater. 20(23), 4579 (2008)CrossRefGoogle Scholar
  56. Walton, K.S., Snurr, R.Q.: Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129(27), 8552 (2007)CrossRefGoogle Scholar
  57. Wang, M.J.: Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem. Technol. 71, 520 (1998)CrossRefGoogle Scholar
  58. Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808 (1963)CrossRefGoogle Scholar
  59. Wojtaszek, A., Sobczak, I., Ziolek, M., Tielens, F.: Gold grafted to mesoporous silica surfaces, a molecular picture. J. Phys. Chem. C 113, 13855 (2009)CrossRefGoogle Scholar
  60. Wojtaszek, A., Sobczak, I., Ziolek, M., Tielens, F.: The formation of gold clusters supported on mesoporous silica surfaces, a molecular picture. J. Phys. Chem. C 114, 9002 (2010)CrossRefGoogle Scholar
  61. Yang, X., Xu, Z., Zhang, C.: Molecular dynamics simulation of dense carbon dioxide fluid on amorphous silica surfaces. J. Colloid Interface Sci. 297(1), 38 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Polymères et Matériaux Avancés, UMR 5268 CNRS/Solvay, Platforme Axel’One MatériauxSaint Fons CedexFrance
  2. 2.Architected Materials and Coating lab, R&I SolvayBrusselsBelgium
  3. 3.Complex Assemblies of Soft Matter, CNRS-Solvay-UPenn UMI 3254BristolUSA
  4. 4.General Chemistry (ALGC)Vrije Universiteit Brussel (Free University Brussels-VUB)BrusselBelgium

Personalised recommendations