Skip to main content
Log in

Zeolite-loaded aerogel as a primary vacuum sorption pump in planetary instruments

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Zeolite-loaded aerogel (ZLA) getters were devised and developed for maintaining vacuum in the Seismic Experience for Interior Structure (SEIS) instrument on the NASA InSight mission to Mars. The ZLA are very lightweight compound materials (~ 0.1 g/cm3) with tunable density and high surface area (~ 500 m2/g), capable of maintaining high vacuum (HV, < 10−3 mbar) for extended periods of time at room temperature without any maintenance or consumption of power. Low temperatures, such as the surface environments on Mars and the icy worlds, enhance the ZLA adsorption by orders of magnitude, extending their capacity to the deep HV range sustainable over multi-year missions. Selective adsorption properties for species of interest can be further enhanced by cation exchange (Na+, Ca2+, Mg2+, Pd2+, etc.) prior to the zeolite incorporation in the material. The sol–gel process was formulated to produce homogeneously dispersed micron-sized zeolite particles embedded in the aerogel matrix. The ZLA liquid precursor can be cast in practically any shape prior to the formation of the solid wet gel, which is then dried supercritically. The resulting mesoporous aerogel network provides excellent molecular transport to the zeolite particles. For particle sensitive instruments such as SEIS, the ZLA adsorbers can be isolated by sub-micron filters without noticeable effects on their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barengoltz, J., Moore, S., Soules, D., Voecks, G.: The wide field/planetary camera 2 (WFPC-2) molecular adsorber. JPL Publication 94-001 (1994)

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Day, C.-Y., Chang, C.J., Chen, C.-Y.: Phase equilibrium of ethanol + CO2 and Acetone + CO2 at elevated pressures. J. Chem. Eng. Data 41, 839–843 (1996)

    Article  CAS  Google Scholar 

  • De Raucourt, S., Gabsi, T., Tanguy, N., Mimoun, D., Lognonne, P., Gagnepain-Beyneix, J., Banerdt, W., Tillier, S., Hurst, K.: The VBB SEIS experiment of InSight”, 39th COSPAR scientific assembly. COSPAR Meet. 39, 429 (2012)

    Google Scholar 

  • Dubinin, M.M., Astakhov, V.A.: Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure. Adv. Chem. 102, 69–85 (1971)

    Article  CAS  Google Scholar 

  • Gorbach, A., Stegmaier, M., Eigenberger, G.: Measurement and modeling of water vapor adsorption on zeolite 4A—equilibria and kinetics. Adsorption 10, 29–46 (2004)

    Article  CAS  Google Scholar 

  • Gun’ko, V.M., Zarko, V.I., Chuikov, B.A., Dudnik, V.V., Ptushinskii, Y.G., Voronin, E.F., Pakhlov, E.M., Chuiko, A.A.: Temperature-programmed desorption of water from fumed silica, titania, silica/titania, and silica/alumina. Int. J. Mass Spectrom. Ion Processes 172, 161179 (1998)

    Google Scholar 

  • Huey, L.G.: Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. Mass Spectrom. Rev. 26, 166–184 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Laurent, P.H., Abgrall, M., Jentsch, C.H., Lemonde, P., Santarelli, G., Clairon, A., Maksimovic, I., Bize, S., Salomon, C.H., Blonde, D., Vega, J.F., Grosjean, O., Pocard, F., Saccoccio, M., Chaubet, M., Ladiette, N., Guillet, L., Zenone, I., Delaroche, C.H., Sirmain, C.H.: Design of the cold atom PHARAO space clock and initial test results. Appl. Phys. B 84, 683–690 (2006)

    Article  CAS  Google Scholar 

  • Li, G., Xiao, P., Webley, P.A., Zhang, J., Singh, R.: Competition of CO2/H2O in adsorption based CO2 capture. Energy Proced. 1, 1123–1130 (2009)

    Article  CAS  Google Scholar 

  • Li, L., Qu, Q., Wang, B., Li, T., Zhao, J., Ji, J., Ren, W., Zhao, X., Ye, M., Yao, Y., Lü, D., Liu, L.: Initial tests of a rubidium space cold atom clock. Chin. Phys. Lett. 3, 063201 (2016)

    Article  Google Scholar 

  • Lognonné, P., Johnson, C.L.: Planetary seismology, In: Treatise on Geophysics, 2nd edn, Vol. 10, Elsevier, Oxford, pp. 103–120, (2015)

    Google Scholar 

  • Mahaffy, P.R., Webster, C.R., Cabane, M., Conrad, P.G., Coll, P., Atreya, S.K., Arvey, R., Barciniak, M., Benna, M., Bleacher, L., Brinckerhoff, W.B., Eigenbrode, J.L., Carignan, D., Cascia, M., Chalmers, R.A., Dworkin, J.P., Errigo, T., Everson, P., Franz, H., Farley, R., Feng, S., Frazier, G., Freissinet, C., Glavin, D.P., Harpold, D.N., Hawk, D., Holmes, V., Johnson, C.S., Jones, A., Jordan, P., Kellogg, J., Lewis, J., Lyness, E., Malespin, C.A., Martin, D.K., Maurer, J., McAdam, A.C., McLennan, D., Nolan, T.J., Noriega, M., Pavlov, A.A., Prats, B., Raaen, E., Sheinman, O., Sheppard, D., Smith, J., Stern, J.C., Tan, F., Trainer, M., Ming, D.W., Morris, R.V., Jones, J., Gundersen, C., Steele, A., Wray, J., Botta, O., Leshin, L.A., Owen, T., Battel, S., Jakosky, B.M., Manning, H., Squyres, S., Navarro-González, R., McKay, C.P., Raulin, F., Sternberg, R., Buch, A., Sorensen, P., Kline-Schoder, R., Coscia, D., Szopa, C., Teinturier, S., Baffes, C., Feldman, J., Flesch, G., Forouhar, S., Garcia, R., Keymeulen, D., Woodward, S., Block, B.P., Arnett, K., Miller, R., Edmonson, C., Gorevan, S., Mumm, E.: The sample analysis at mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012)

    Article  Google Scholar 

  • Mahaffy, P.R., Benna, M., King, T., Harpold, D.N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., Holmes, V., Johnson, C.S., Kellogg, J., Kimvilakani, P., Lefavor, M., Hengemihle, J., Jaeger, F., Lyness, E., Maurer, J., Melak, A., Noreiga, F., Noriega, M., Patel, K., Prats, B., Raaen, E., Tan, F., Weidner, E., Gundersen, C., Battel, S., Block, B.P., Arnett, K., Miller, R., Cooper, C., Edmonson, C., Nolan, J.T.: The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev. 195, 49–73 (2015)

    Article  CAS  Google Scholar 

  • Mimoun, D., Lognonné, P., Banerdt, W.B., Hurst, K., Deraucourt, S., Gagnepain-Beyneix, J., Pike, T., Calcutt, S., Bierwirth, M., Roll, R., Zweifel, P., Mance, D., Robert, O., Nébut, T., Tillier, S., Laudet, P., Kerjean, L., Perez, R., Giardini, D., Christenssen, U., Garcia, R.: The InSight SEIS experiment.” In: Lunar and planetary science Conference, Lunar and Planetary Inst. Technical Report 43, 1493 (2012)

  • Mincov, I., Petkov, M.P., Tsou, P., Troev, T.: Porosity characterization of aerogels using positron annihilation lifetime spectroscopy. J. Non-Cryst. Sol. 350, 253–258 (2004)

    Article  CAS  Google Scholar 

  • Petkov, M.P., Jones, S.M.: Accurate bulk density determination of irregularly shaped translucent and opaque aerogels. Appl. Phys. Lett. 108, 194104 (2016)

    Article  CAS  Google Scholar 

  • Petkov, M.P., Soules, D.M.: UHV system for quasistatic characterization of adsorbers for medium vacuum applications. Vacuum 151, 254–260 (2018)

    Article  CAS  Google Scholar 

  • Petkov, M.P., Jones, S.M., Tsapin, A., Anderson, M.S.: Intrinsic surface areas and bond site concentrations of silica aerogels of different densities. J. Supercrit. Fluids 106, 100–104 (2015)

    Article  CAS  Google Scholar 

  • Petkov, M.P., Jones, S.M., Voecks, G.E., Hurst, K.J., Grosjean, O., Faye, D., Rioland, G., Sunday, C.M., Bradford, E.M., Warner, W.N., Mennella, J.M., Ferraro, N.W., Gallegos, M., Soules, D.M., Lognonné, P., Banerdt, W.B., Umland, J.W.: Development of the primary sorption pump for the seis seismometer of the InSight mission to mars. Space Sci. Rev. 214, 112 (2018). https://doi.org/10.1007/s11214-018-0548-8

    Article  Google Scholar 

  • Reichenauer, G., Scherer, G.W.: Nitrogen sorption in aerogels. J. Non-Cryst. Solids 285, 167–174 (2001)

    Article  CAS  Google Scholar 

  • Richter, D., Lipka, D.: Measurement of the refractive index of silica aerogel in vacuum. Nucl. Instr. Methods Phys. Res. A 513, 635–638 (2003)

    Article  CAS  Google Scholar 

  • Rioland, G., Jean Daou, T., Faye, D., Patarin, J.: A new generation of MFI-type zeolite pellets with very high mechanical performance for space decontamination. Microporous Mesoporous Mater. 221, 167–174 (2016)

    Article  CAS  Google Scholar 

  • Tillotson, T.M., Hrubesh, L.W.: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J. Non-Cryst. Solids 145, 44–50 (1992)

    Article  CAS  Google Scholar 

  • Tjoelker, R.L., Prestage, J.D., Burt, E.A., Chen, P., Chong, Y.J., Chung, S.K., Diener, W., Ely, T., Enzer, D.G., Mojaradi, H., Okino, C., Pauken, M., Robison, D., Swenson, B.L., Tucker, B., Wang, R.: Mercury ion clock for a NASA technology demonstration mission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1034–1043 (2016)

    Article  PubMed  Google Scholar 

  • Waite, J.H. Jr., Lewis, W.S., Kasprzak, W.T., Anicich, V.G., Block, B.P., Cravens, T.E., Fletcher, G.G., Ip, W.-H., Luhmann, J.G., McNutt, R.L., Niemann, H.B., Parejko, J.K., Richards, J.E., Thorpe, R.L., Walter, E.M., Yelle, R.V.: The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci. Rev. 114, 113–231 (2004)

    Article  CAS  Google Scholar 

  • Weitkamp, J.: Zeolites and catalysis. Solid State Ionics 131, 175–188 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kenneth Hurst (JPL), Olivier Grosjean, Delphine Faye, Guillaume Rioland (Centre National d’Études Spatiales; CNES) for fruitful discussions, G.R. and D.F. (CNES) for supplying the NaY zeolite pellets, Randal Hatfield (Pacific Surface Science, Inc.) for gas adsorption experiments and William Warner (JPL) for TGA measurements. This paper constitutes InSight Contribution Number 66. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail P. Petkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petkov, M.P., Jones, S.M. & Voecks, G.E. Zeolite-loaded aerogel as a primary vacuum sorption pump in planetary instruments. Adsorption 25, 187–200 (2019). https://doi.org/10.1007/s10450-018-00003-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-00003-3

Keywords

Navigation