Advertisement

Adsorption

, Volume 24, Issue 1, pp 29–41 | Cite as

Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study

  • Amirali Abbasi
  • Jaber Jahanbin Sardroodi
Article

Abstract

Using density functional theory (DFT) calculations, we predict the SOx sensing performance of heterostructured TiO2/ZnO nanocomposites with and without nitrogen doping. The interaction of SO2 and SO3 molecules with the considered nanocomposites were examined based on different orientations of the gas molecules towards the nanocomposite. The fivefold coordinated titanium atoms were found to be the binding sites on the TiO2 side of nanocomposite, whereas, on the ZnO side, the oxygen atom acts as a binding site. Our theoretical results demonstrate that the interaction of SOx molecules with N-doped nanocomposites is more energetically favorable than that with undoped ones, indicating that N-doped TiO2/ZnO nanocomposites show stronger chemisorption and greater electron transfer effects than undoped TiO2/ZnO. The electronic properties of the adsorption systems were investigated in terms of the projected density of states and molecular orbitals. After the adsorption process, all S–O bonds of the SOx molecules were elongated, which is probably attributed the electron density transfer from the S–O bonds to the newly formed bonds between the nanocomposite and SOx molecules. The charge transfer analysis revealed that N-doped nanocomposite acts as a donor. The N-doped nanocomposite induce dramatic changes of electronic properties of TiO2/ZnO, which can be useful feature for improving the gas sensing performance. Our calculation results aim to provide some information for future experiment.

Keywords

Density functional theory Interaction PDOS SOx TiO2/ZnO nanocomposite 

Notes

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University.

References

  1. Bansal, P., Bhullar, N., Sud, D.: Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst. Desalin. Water Treat. 12, 108–113 (2009)CrossRefGoogle Scholar
  2. Bansal, P., Bhullar, N., Sud, D.: Heterostructured TiO2/ZnO–excellent nanophotocatalysts for degradation of organic contaminants in aqueous solution. Desalin. Water Treat. 52, 7004–7014 (2014)CrossRefGoogle Scholar
  3. Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., Smith, J.V.: Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639–3646 (1987)CrossRefGoogle Scholar
  4. Chaturvedi, S., Rodriguez, J.A., Jirsak, T., Hrbek, J.: Surface chemistry of SO2 on Zn and ZnO: photoemission and molecular orbital studies. J. Phys. Chem. B. 102, 7033–7043 (1998)CrossRefGoogle Scholar
  5. Chen, Y.J., Xue, X.Y., Wang, Y.G., Wang, T.H.: Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl. Phys. Lett. 87(1–3), 233503 (2005)Google Scholar
  6. Chen, G., et al.: High-energy faceted SnO2-coated TiO2 nan-belt heterostructure for near-ambient temperature-responsive ethanol sensor. ACS Appl. Mater. Interfaces. 7, 24950–24956 (2015)CrossRefGoogle Scholar
  7. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  8. Diebold, U., Ruzycki, N., Herman, G.S., Selloni, A.: One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal. Today. 85, 93–100 (2003)CrossRefGoogle Scholar
  9. Diebold, U., Vogel Koplitz, L., Dulub, O.: Atomic-scale properties of low-index ZnO surfaces. Appl. Surf. Sci. 237, 336–342 (2004)CrossRefGoogle Scholar
  10. Eranna, G., Joshi, B.C., Runthala, D.P., Gupta, R.P.: Oxide materials for development of integrated gas sensors—a comprehensive review. Crit. Rev. Sol. State Mater. Sci. 2, 111–188 (2004)CrossRefGoogle Scholar
  11. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  12. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)CrossRefGoogle Scholar
  13. Habib, M.A., Shahadat, M.T., Bahadur, N.M., Ismail, I.M.I., Mahmood, A.J.: Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. Int. Nano Lett. 3(5), 1–8 (2013)Google Scholar
  14. Hadjiivanov, K.I., Klissurski, D.K.: Surface chemistry of titania (anatase) and titania supported catalysts. Chem. Soc. Rev. 25, 61 (1996)CrossRefGoogle Scholar
  15. Hagfelt, A., Gratzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)CrossRefGoogle Scholar
  16. Hoffmann, M.R., Martins, S.T., Choi, W., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)Google Scholar
  17. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)CrossRefGoogle Scholar
  18. Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., Anandi, V.: Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater. Res. Bull. 46(10), 1586–1592 (2011)CrossRefGoogle Scholar
  19. Kay, A., Gratzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells. 44, 99–117 (1996)CrossRefGoogle Scholar
  20. Kihara, K., Donnay, G.: Anharmonic thermal vibrations in ZnO. Can. Miner. 23, 647–654 (1985)Google Scholar
  21. Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)CrossRefGoogle Scholar
  22. Koklj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. J. Comput. Mater. Sci. 28, 155–168 (2003)CrossRefGoogle Scholar
  23. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science. 287(5453), 622–625 (2000)CrossRefGoogle Scholar
  24. Lazzeri, M., Vittadini, A., Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B. 63, 155409 (2001)CrossRefGoogle Scholar
  25. Lazzeri, M., Vittadini, A., Selloni, A.: Erratum: structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B. 65, 119901 (2002)CrossRefGoogle Scholar
  26. Li, C.C., Du, Z.F., Li, L.M., Yu, H.C., Wan, Q., Wang, T.H.: Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl. Phys. Lett. 91(13), 032101 (2007)Google Scholar
  27. Liu, X.Y., Chub, P.K., Ding, C.: Mater. Sci. Eng. R. 47, 49–121 (2004)CrossRefGoogle Scholar
  28. Liu, J., Dong, L., Guo, W., Liang, T., Lai, W.: CO adsorption and oxidation on N-doped TiO2 nanoparticles. Phys. Chem. C. 117, 13037–13044 (2013)CrossRefGoogle Scholar
  29. Lou, Z., et al.: A class of hierarchical nanostructures: ZnO surface functionalized TiO2 with enhanced sensing properties. RSC Adv. 3, 3131–3136 (2013)CrossRefGoogle Scholar
  30. Lu, X., Leng, Y., Zhang, X., Xu, J., Qin, L., Chan, C.: Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials 26, 1793–1801 (2005)Google Scholar
  31. Nambu, A., Graciani, J., Rodriguez, J.A., Wu, Q., Fujita, E., Sanz, J.F.: N doping of TiO2 (110) photoemission and density-functional studies. J. Chem. Phys. 125, 094706 (2006)CrossRefGoogle Scholar
  32. Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007)CrossRefGoogle Scholar
  33. Oudar, J.: Sulfur adsorption and poisoning of metallic catalysts. Catal. Rev. Sci. Eng. 22, 171–195 (1980)Google Scholar
  34. Ozgur, U., et al.: ZnO devices and applications: a review of current status and future prospects. Proc. IEEE. 7, 1255–1268 (2010)Google Scholar
  35. Park, S., et al.: Enhanced ethanol sensing properties of TiO2/ZnO core-shell nanorod sensors. Appl. Phys. A. 115, 1223–1229 (2014)CrossRefGoogle Scholar
  36. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  37. Prades, J.D., Cirera, A., Morante, J.R.: Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. Sens. Actuators B 142, 179–184 (2009)CrossRefGoogle Scholar
  38. Regan, O., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)Google Scholar
  39. Rumaiz, A.K., Woicik, J.C., Cockayne, E., Lin, H.Y., Jaffari, G.H., Shah, S.I.: Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. J. Appl. Phys. Lett. 95(26), 262111 (2009)CrossRefGoogle Scholar
  40. Schneider, W.F.: Qualitative differences in the adsorption chemistry of acidic (CO2, SOx) and amphiphilic (NOx) species on the alkaline earth oxides. J. Phys. Chem. B 108, 273–282 (2004)CrossRefGoogle Scholar
  41. Sellers, H., Shustorovich, E.: Coordination modes and bonding of sulfur oxides on transition metal surfaces: combined ab initio and BOC-MP results. Surf. Sci. 346, 322 (1996a)CrossRefGoogle Scholar
  42. Sellers, H., Shustorovich, E.: Chemistry of sulfur oxides on transition metal surfaces: a bond order conservation-Morse potential modeling perspective. Surf. Sci. 356, 209 (1996b)CrossRefGoogle Scholar
  43. Skalska, K., Miller, J.S., Ledakowicz, S.: Trends in NO x abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010)CrossRefGoogle Scholar
  44. Spencer, M.J.S.: Gas sensing applications of 1D-nanostructured zinc oxide: insights from density functional theory calculations. Prog. Mater Sci. 57, 437–486 (2012)CrossRefGoogle Scholar
  45. Spencer, M.J.S., Yarovsky, I.: ZnO nanostructures for gas sensing: interaction of NO2, NO, O, and N with the ZnO(101̅0) surface. J. Phys. Chem. C 114(24), 10881 (2010)Google Scholar
  46. Tasinato, N., Charmet, A.P., Stoppa, P., Giorgianni, S., Buffa, G.: N2 , O 2-and He-collision-induced broadening of sulfur dioxide ro-vibrational lines in the 9.2 μm atmospheric window. Spectrochim. Acta A 118, 373–379 (2014)CrossRefGoogle Scholar
  47. The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site, http://www.openmx-square.org
  48. Tripathi, S.K., Kaur, R., Rani, M.: Oxide nanomaterials and their applications as a memristor. Solid State Phenom. 222, 67–96 (2015)CrossRefGoogle Scholar
  49. Vittadini, A., Selloni, A., Rotzinger, F.P., Gratzel, M.: Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81, 2954–2957 (1998).CrossRefGoogle Scholar
  50. Vittadini, A., Casarin, M., Selloni, A.: Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor. Chem. Acc. 117, 663–671 (2007)CrossRefGoogle Scholar
  51. Wells, A.F.: Structural Inorganic Chemistry. Oxford University Press, New York (1984)Google Scholar
  52. Wilkinson, G., Gillard, R. D., McCleverty, J. A. (eds.): Comprehensive Coordination Chemistry, p. 56. Pergamon Press, New York (1987) (Chap. 16)Google Scholar
  53. Wyckoff, R.W.G.: Crystal Structures, 2nd edn. Interscience Publishers, New York (1963)Google Scholar
  54. Xu, A.W., Gao, Y., Liu, H.Q.: The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207, 151–157 (2002)Google Scholar
  55. Yu, B.F., Hu, Z.B., Liu, M., Yang, H.L., Kong, Q.X., Liu, Y.H.: Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32, 3–20 (2009)CrossRefGoogle Scholar
  56. Zhu, C.L., et al.: Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces. 4, 665–671 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research Group (CNRG)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations